Wave and Traversal Algorithms

- Introduction
- Results about Wave algorithms
- Algorithms
- Traversal Algorithms
- Complexity results
- Overview
Introduction to Wave algorithms

- Many things in distributed systems can be achieved using Message Passing. Message Passing systems are called Wave algorithms.
- Some examples are broadcasting, synchronization, triggers, distributed computing of a function.
- Used in many distributed tasks as subtasks.
- A fixed, undirected and connected network topology is assumed.
- Define a causal precedence relation \preceq
Definition of Wave Algorithms

- Wave algorithm is a distributed algorithm that satisfies the following three conditions

- (1) *Termination*. Each computation is finite, i.e. $\forall C : |C| < \infty$.

- (2) *Decision*. Each computation contains at least one decide event, i.e. $\forall C : \exists e \in C : e$ is a decide event.

- (3) *Dependence*. In each computation each decide event is causally preceded by an event in each process, i.e.
 $\forall C : \forall e \in C : (\text{e is a decide event} \Rightarrow \forall q \in P \exists f \in C_q : f \prec e)$.

- A computation of a wave algorithm is called a wave.

- Initiators and non-initiators.
Differences between Wave algorithms

- Centralization
- Topology
- Initial knowledge
 - Process identity
 - Neighbors’ identities
 - Sense of Direction
 - Number of Decisions
 - Complexity
Elementary Results about Wave Algorithms

- Each event in a computation is preceded by an event in an initiator.
- A wave with one initiator defines a spanning tree of the network when for each non-initiator the channel is selected through which the first message is received.
- Each decide event is causally preceded by a send event in all other processes except for the one it takes place in.
- Let C be a wave with one initiator p, such that a decide event occurs in p. Then at least N messages are exchanged in C.
- Let A be a wave algorithm for arbitrary networks without initial knowledge of the neighbors identities. Then A exchanges at least $|E|$ messages in each computation.
Propagation of Information with Feedback

- Some processes hold information that needs to be propagated to all processes. Also some processes must receive a notification when the broadcast is complete.
- Theorem: Every PIF algorithm is a wave algorithm
- Theorem: Every wave algorithm can be employed as a PIF algorithm
• Let P be a PIF algorithm.
• All computations in P must be finite.
• In each computation a decide event must occur.
• If a decide event happens in process p that is not preceded by any event in process q, then there is an execution where q has not received any messages which contradicts the requirements.
Synchronization

- Synchronization problem is such that there are a number of processes. Each process p has to execute an event a_p and some processes must execute event b_p. All events a_p must be executed before any of the events b_p is executed.

- Theorem: Every synchronization algorithm is a wave algorithm.

- Theorem: Every wave algorithm can be employed as a synchronization algorithm.
Computation of Infimum functions

- There is a class of algorithms that depend on the input of every process. An example of such algorithms is a computation of infimum over all inputs, which must be drawn from partially ordered set.

- Let (X, \leq) be a partial order. c is called infimum of a and b if $c \leq a, c \leq b$ and $\forall d: (d \leq a \land d \leq b \Rightarrow d \leq c)$. This infimum is denoted by $a \land b$.

- \land is commutative $(a \land b = b \land a)$, and associative $(a \land (b \land c) = (a \land b) \land c)$.

- Theorem: Every INF algorithm is a wave algorithm.

- Theorem: Every wave algorithm can be used to compute an infimum.
Computation of Infimum functions (continued)

- **Infimum Theorem**: If \star is a binary operator on a set X such that
 - \star is commutative, i.e. $a \star b = b \star a$.
 - \star is associative, i.e. $(a \star b) \star c = a \star (b \star c)$
 - \star is idempotent, i.e. $a \star a = a$.

then there is a partial order \leq on X such that \star is the infimum function.

- Some examples of infimum functions are \land, \lor, \min, \max, \gcd, lcm, \cap, and \cup.
Algorithms

- The Ring Algorithm
- The Tree Algorithm
- The Echo Algorithm
- The Polling Algorithm
- The Phase Algorithm
- Finn’s Algorithm
Ring Algorithm

- Centralized algorithm. Initiator sends a message \(< tok >\) called token.
- Each process waits until it receives the token and then passes it on. When initiator receives the token, it decides.
- The Ring Algorithm is a wave algorithm
The Tree Algorithm

- A wave algorithm in which leaves are initiators.
- Works in a tree network.
- If a process had received messages through all their incident channels except one, it sends a message through the last one.
- If a process has received a message through all its incident channels, it decides.
- The Tree algorithm is a wave algorithm
The Echo Algorithm

- The echo algorithm floods messages from the initiator to all the nodes and back.
- Works in arbitrary networks and forms a spanning tree starting from the initiator.
- The initiator sends a message < tok > to all its neighbors. When a non-initiator receives < tok > for the first time it sends a \uparrowtok_i to all its neighbors.
- When a non-initiator has received < tok > from all its neighbors, it sends a < tok > to its father, i.e. the node that first sent < tok > to it. When initiator has received a < tok > from all its neighbors, it decides.
- Theorem: The Echo Algorithm is a wave algorithm.
The Polling Algorithm

- The polling algorithm works in clique networks.
- The initiator sends a query to all nodes and decides after it has received receipt from all nodes.
- Theorem: The Polling Algorithm is a wave algorithm.
Traversing Algorithms

- Traversing Algorithms are an important subclass of wave algorithms. They are defined by the following properties:
 - In each computation there is one initiator, which starts the algorithm by sending out exactly one message.
 - A process which receives a message, either sends out a message or decides.
 - The algorithm terminates in the initiator and when this happens each process has sent a message at least once.
- This means that there is always exactly one message in transit, or exactly one process has just received a message and has not yet sent a message.
Traversals Algorithms (continued)

- An algorithm is an f-traversal algorithm (for a class of networks), if
 - it is a traversal algorithm
 - in each computation at least $\min(N, x + 1)$ processes have been visited after $f(x)$ token passes.

- For example ring algorithm is an x-traversal algorithm, because $x+1$ processes have been visited after x passes.
Traversals Algorithms

- Cliques
- Tori
- Hypercubes
- Connected Networks (Tarry’s algorithm)
Cliquettes

- A clique can be traversed by sequential polling. One neighbor at a time is polled and when a reply is received, another is polled.

- Theorem: Clique is 2x-traversal algorithm.
Tori

- $n \times n$ torus graph is the graph $G = (V, E)$ where

 $V = \mathbb{Z}_n \times \mathbb{Z}_n = \{(i, j) : 0 \leq i, j < n\}$

 and

 $E = \{(i, j)(i', j') : (i = i' \land j = j' \pm 1) \lor (i = i' \pm j = j')\}$

 with addition and substraction modulo n.

- The Torus is a Hamiltonian graph and the token is sent along a Hamiltonian cycle. That is achieved by sending the token up every kth step, i.e. when $n|k$. Otherwise the token is sent to the right.

- Theorem: The torus algorithm is an x-traversal algorithm for torus.
Traversing Connected Networks

- Tarry’s algorithm
 - R1. A Process never forwards the token twice through the same channel.
 - R2. A non-initiator forwards the token to its father only if there is no other channel possible according to previous rule.

- Theorem: Tarry’s algorithm is a traversal algorithm

- Each computation of Tarry’s algorithm defines a spanning tree of the network.
Time Complexity of wave algorithms

- In asynchronous systems the time between sending of a message and its receipt may vary a lot. Thus a instruction count will be used for measuring Time Complexity.

- Definition: The time complexity of a distributed algorithm is the maximum time taken by a computation of the algorithm under the following assumptions.
 - A process can execute any finite number of events in zero time.
 - The time between sending and receipt of a message is at most one time unit.

- Lemma: For Traversal algorithms the time complexity equals the message complexity.
Distributed Depth-first search

- Restrict Tarry’s algorithm to gain classical depth-first search.
- When a process receives the token it sends it back through the same channel, if this is allowed by rules R1 and R2.
- Theorem: Classical depth-first search algorithm computes a depth-first search spanning tree using $2|E|$ messages and $2|E|$ time units.
Distributed Depth-first Search using Linear Time

- The time complexity of depth-first search can be reduced by traversing edges in parallel, rather than serially.
- Awerbuch’s solution
- When process p is first visited by a token $< tok >$, it sends a $< vis >$ message to all its neighbors except its father. These respond to it by sending $< ack >$. Only when it has received $< ack >$ from all its neighbors will p forward the $< tok >$. When the $< tok >$ later arrives at r, it will not forward $< tok >$ to p unless p is its father.
- Theorem: Awerbuch’s algorithm computes a depth-first search tree in $4N - 2$ time units and $4|E|$ messages.
Cidon Algorithm

- Cidon’s algorithm improves from Awerbuch’s algorithm by not waiting for $<ack>$ messages.

- When process p passes the token, it marks down the process it passed the token to. If p receives the token from some other neighbor process, it ignores the token and marks the edge used. If a process r receives an $<ack>$ from a process it has sent token to, it will resend the token to another node.

- Theorem: Cidon’s algorithm computes a depth-first search tree in $2N - 2$ time units using $4|E|$ messages.
Overview

- Wave and Traversal algorithms can solve a wide range of fundamental problems in distributed algorithms. These can often be found as subproblems of larger problems.
- These problems include synchronization between processes, broadcasting information, forming a spanning tree of the network and many others.
- Traversal algorithms are totally ordered by causality.
The Phase Algorithm

- Decentralised algorithm for arbitrary directed networks. In-neighbors of process p are those that can send to process p and out-neighbors of process p are those that it can send to.

- Some upper limit to networks diameter D must be known.

- Each process sends exactly D messages to each out-neighbor. Only after receiving at least i messages from each in-neighbor, will the (i+1)th message be sent.

- Theorem: The Phase Algorithm is a wave algorithm
Finn’s Algorithm

- Finn’s Algorithm is a phase algorithm that can be used for arbitrary directed networks. It doesn’t require knowledge of upper bound on diameter D, but does require availability of unique identities for the processes.