return date: Thu Nov 8

1. Let's look at the quantum circuit in course book Figure 9.7 (p. 203). It consists of two gates, both operating on two qubits. The first gate (G_1) applies rotation operator

$$L = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

to the first input qubit (q1), and leaves the other (q2) intact. The second gate G_2 is the XOR gate

$$XOR = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

The inputs to the circuit should both be $|0\rangle$. Assume, however, that in the preparation of q1 some error was introduced, so that if you would measure q1, you would get "1" with 10 % probability. q2 is assumed to be $|0\rangle$ without any error.

- a) What is the unitary matrix implementing G_1 ?
- b) Compute the intermediate result (after G_1 has operated) and the final result (after G_1 and G_2) for both the erroneous and the faultless input qubits.
- c) It is said in the book (Ch. 5.1) that the error should remain constant. Do you results of b) confirm this?
- 2. The Hamiltonian for a two-gate Feynman computer (course book p. 86)

$$H = c_2 \cdot a_1 \cdot M_1 + c_3 \cdot a_2 \cdot M_2 + (c_2 \cdot a_1 \cdot M_1)^{\dagger} + (c_3 \cdot a_2 \cdot M_2)^{\dagger}$$

What is the effect of the following errors on the possible states of the cursor system? $(\alpha, \beta \text{ and } \gamma \text{ are nonzero real numbers.})$

a) In term $c_2 \cdot a_1 \cdot M_1$, an erroneous annihilation matrix a' is used for building a_1 , instead of the correct matrix a. Other matrices have no errors.

$$a' = \begin{pmatrix} 0 & \alpha \\ 0 & \beta \end{pmatrix}$$

(In the conjugate term, a correct a is used).

b) In term $c_2 \cdot a_1 \cdot M_1$, c' is used instead of the correct creation matrix. Other matrices have no errors.

$$c' = \begin{pmatrix} 0 & \gamma \\ 1 & 0 \end{pmatrix}$$

(again, the corresponding conjugate term can be assumed to use correct operators).

c) Can these errors lead to a situation, where the result is measured and thought to be the final result, althought it isn't?