return date: Thu 18 Oct

- 1. a) Determine $|\phi\rangle = |\psi\rangle \otimes |\psi\rangle \otimes |\psi\rangle$ for $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$. b) What is the probability to get result "101" when all qubits of state $|\phi\rangle$ are measured?
 - c) Is it possible to know the states of all three qubits of $|\phi\rangle$ after only one or two have been measured? If yes, in which situations (i.e. which qubits must be measured and what the measurement results must be)?
- 2. Let $|\psi\rangle=\frac{1}{2}|001\rangle+\frac{1}{2}|100\rangle+\frac{1}{2}|010\rangle+\frac{1}{2}|111\rangle$.
 - a) Is it possible to know the states of all three qubits of $|\psi\rangle$ after only one or two have been measured? If yes, in which situations (i.e. which qubits must be measured and what the measurement results must be?)
 - b) Assume that the third (the rightmost) qubit is measured, and that the measurement result is "1". Into which state does $|\psi\rangle$ collapse after this measurement?
 - c) Did $|\psi\rangle$ collapse into a pure state? A state is called *pure* if it can be represented as a tensor product of single qubit states.
- 3. Let $|0'\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ and $|1'\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$.

The vector

$$|\psi'\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

is represented in the basis $\{|0'\rangle, |1'\rangle\}$. What is the probability of getting "1" as result, if we measure $|\psi'\rangle$ in the basis $\{|0\rangle, |1\rangle\}$?