
HUT / TCS / T-79.190: Testing of concurrent systems / 2004 1

Chapter 1

Introduction

Welcome to study formal conformance testing! This is the grand subject of these lecture notes,
which I have prepared for the course

T-79.190: Testing of Concurrent Systems,

lectured at Laboratory for Theoretical Computer Science, Helsinki University of Technology.

1.1 Goals
The aim of this course is to work as an in-depth introduction into the subject area of formal
conformance testing, whatever it happens to mean. What I present here is partly a “reorganized
synthesis” of what has been said elsewhere (during the last decades), partly something I have
myself understood or developed while working in the industry.

After taking this class, you should be able to
� Understand academic papers on the subject and study the area further.
� Understand tools and methodologies that are based on the theories and ideas related to

formal conformance testing.
� Be able to successfully take part in industrial projects where formal conformance testing

is either implemented or exploited.

Now these goals must be taken with a grain of salt, because (1) formal conformance testing
is not in very wide spread use yet, and (2) there is no established, single theory of formal con-
formance testing. The latter is especially true in the context of systems with large (= infinite)
state spaces.

1.2 Software Testing in General
For our purposes, [software] testing is the process of

1. Interacting with a system and

2. evaluating the results of that interaction, in order to

3. determine if the tested system conforms to its operational specification.

This is a very broad definition for testing. It covers most if not all forms of testing in
practice. Namely, to test a system, you must be able to interact with it. A system that you can
not access nor observe is not interesting from the viewpoint of testing. On the other hand, if
there are no requirements for the system’s behavior (i.e. there is no operational specification),
then we know a priori that the system will pass all tests and it is again pointless to test at all.

Hence, we must (1) interact, and (2) there must be an operational specification (albeit
potentially very informal one). The evaluation process links the results of interaction to the
specification, yielding a verdict on the system being tested. Clearly, the testing verdict must
be based on the specification by the argument above. So, in a sense, the above definition is
almost trivial. It is nevertheless a useful way to define testing on abstract level, and it mentions
implicitly all important components of a general testing setup.

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 2

1.3 Formal Conformance Testing
We shall now turn our attention to a certain form of testing, namely formal conformance testing.
In itself, this is a term that often appears in academic literature. It is, however, not very de-
scriptive, or at least it can be misleading. Therefore it is important to define what I mean, in
the context of this class, by this term.

Let us look first on the various words in this term.
“Testing” denotes the process of testing, as described above. Thus, it means that we inter-

act with a system, evaluate the results, and determine based on the results of these evaluation
if the system works correctly or not.

“Conformance” means here that we specifically focus on a testing setup where the cor-
rectness of the system under test’s behavior is defined in terms of an operational specification. A
system that works correctly conforms to its specification. This is the essence of this word here.
There are other “forms” of testing, such as load testing. The purpose of load testing is to deter-
mine how a system works under various working loads. Now it is possible that a system fails
a load test, for example by responding too slowly, or by crashing under heavy loads. Actually,
of course, a system that fails a load test fails to conform to some requirements imposed on
this system. In this sense, all testing could be seen to be “conformance testing”, because the
activity of testing always implies some form of requirements or specifications, either explicit
or implicit. But, in practice, the word “conformance” emphasizes the use of a relatively clear,
behaviorally oriented specification as the basis for evaluating the correctness of a system.

“Formal” here does not mean, that the testing process itself would be formal (involving
rigorous organizational processes and structures, lots of forms to be filled, fixed-form reports
et cetera), but that the basic testing setup has been mathematically formalized, and that the
testing activities and processes are founded upon this formalization.

Let us now try to identify the main concepts that we need to understand the [formal]
[conformance] testing setup in general.

1.3.1 System Under Test

Maybe the most self-evident entity in an FCT setup is the system under test, which is commonly
abbreviated to SUT. The SUT is also known as “the black box”. It is some form of a system
implementation whose correctness should be evaluated with respect to an operational speci-
fication, that is, a specification that tells how the black box should operate.

Traditionally, an SUT can be subdivided into various parts, of which one is the “implemen-
tation under test”, abbreviated by IUT. The difference between an IUT and the larger SUT is
that the SUT can contain environment simulations, test adapter layers and other such artifacts
that are required to make the real, original implementation IUT testable. But the distinction
between SUT and IUT is not very important in our context now, so let us disregard it and just
assume SUT = the black box we are testing.

1.3.2 Tester

In addition to an SUT, another active entity is required, which is (not surprisingly) a tester.
A tester interacts with an SUT, evaluates whether the results of the interaction correspond
with the related specification, and announces the test verdict, which is usually either “passed”
(black box works this far correctly) or “failed” (black box works incorrectly).

It is useful to make a separation between (1) interacting with the SUT, and (2) determining
the correctness of the SUT’s behavior. However, these both activities are carried by the same
entity, which is the tester.

1.3.3 Operational Specification

The wished-for, envisioned, expected, axiomatically correct behavior of a system is described
in its operational specification. This is the tester’s Bible; it tells which behaviors are acceptable
for the system under test and which are not.

Together, an SUT, a tester, and an operational specification form the basic “triangle drama”
of formal conformance testing (see Fig. 1.1).

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 3

Tester

Specification

SUT
Interaction

Defines
correct
behavior

Verdict

Figure 1.1: The main players.

Tester SUT

Testing interface

Message traffic

Clock

Figure 1.2: Testing interface.

1.4 Testing Interface
The point of interaction between a tester and an SUT can be called the testing interface. We make
some rather general assumptions about the testing interface. Namely, it must be bidirectional.
It must be capable of transmitting messages. The delivery of a single message over a testing
interface must happen atomically, in either direction. It must be possible to determine the time
of a transmission over the interface; in other words, there must be a clock on the interface.

1.5 Traces
A trace is a set of events that “happen” at the testing interface. Thus, every event consists of a
message that has been transmitted, direction for that event, and the time (clock reading) when
the message passed through the testing interface.

We make the general assumption that two events can never occur at exactly the same time
at the testing interface. This assumption could be dispensed with, but then we would need to
consider multisets of events instead of “normal” sets. That would complicate the presentation
somewhat without adding much value. Contemplating about the quantization of the space-
time continuum and its implications to the potentiality of two events occurring at the “same”
(whatever that is) “time” (whatever that is) is beyond our scope.

There is a technical reason to augment the definition of a trace a bit, however. Namely,
we must know how long we have observed the testing interface for events. Clearly, it is more
interesting to observe that no message a transmitted for 100 seconds than to observe that no
message has been transmitted in 2 seconds. Still, as event sets both traces are empty. Therefore

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 4

Tester SUT

A

C

D

Bt = 0.1s

t = 2s

t = 4s

t = 0s

t = 5s

Figure 1.3: A trace.

the final definition for a trace is: a set of directional, timed message transmissions, and a clock
reading when the trace finishes. We will come back to this soon when we formalize this and
other concepts.

In Fig. 1.3, a trace has been depicted. The trace consists of four message transmissions, of
which three are inputs (A, C and D) and one is an output (B). These events take place after
zero, one tenth, two, and four seconds, respectively. The trace itself ends at five seconds since
the beginning. This indicates that it is known that after the message D, there was at least one
second of silent time, but that it is not known what happened after five seconds had passed.

1.6 A Concurrent Variant of Scheme
“There is no point in being too abstract.” We want to follow this brilliant advice, and therefore
wish to see examples of the constructs that we study.

To present examples, we need some form of notation for computational processes. Typ-
ically people call some of these notations “programming languages”. Other notations for
computational processes, not traditionally seen as programming languages, include for in-
stance Petri nets, labeled transition systems, timed hybrid automata, UML state charts, Turing
machines. It has been estimated that there are at least 500 programming languages currently
in active use around the world. So we have a big arsenal from which to choose from.

After strong deliberation, we choose to employ Scheme, a clean dialect of LISP, as our
principal notation for computational processes.

“Structure and Interpretation of
Computer Programs” is a good
book about Scheme. You can
find it online at
http://mitpress.mit.edu/sicp/.

Standard Scheme, however, has no constructs for timing aspects, message passing, nor for
concurrent programming. We must therefore augment Scheme with some simple constructs
for these operations, and describe their semantics. We shall call the result just Scheme, in the
context of this class, because the result is not prominent enough to warrant a name of its own.

1.6.1 Extensions

Thus, we assume the existence of the following procedures and special forms.
Spawn. There is a procedure named spawn that is called as

�
spawn thunk � . (1.1)

This procedure call creates a new thread, a principal unit of dynamic execution, and returns
nothing. The thread begins to execute by calling the procedure thunk, and terminates it exe-
cution when (if ever) the procedure call returns.

Make rendezvous point. There is a procedure named make-rendezvous-point that is
called as �

make-rendezvous-point � . (1.2)

This procedure call creates a new rendezvous point, which is a dynamically created point for
internal synchronization and communication.

The French word rendez-vous
denotes appointment or
meeting. In the world of
concurrent software,
rendezvous denotes a particular
form of remote procedure call.
In our setting, what we have is
more exactly synchronous
message passing, but calling
the “handles” at which this
message passing occurs
“rendezvous points” makes
sense anyway.

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 5

Sync. There is a special form named sync that is used to both communicate with the
external world (e.g. a tester), and to communicate with other threads, and to wait for some
time. The general call format is

�
sync syncitem syncitem . . . � . (1.3)

Every syncitem is one of the following.

� �
output e b � : This denotes an attempt to send the value of the expression e to the envi-

ronment. If the attempt is successful (it should be), computation continues by executing
the body b.

� �
input v b � : This denotes an attempt to receive a value from the environment, and

then continue with the body b. If a value is received, the variable v is bound lexically to
the value and is visible from b, at where execution continues.

� �
write p e b � : This denotes an attempt to write the value of e to a rendezvous point p.

If the attempt is successful, i.e. there is some other thread reading at the same point p,
which then receives the value sent, execution continues from body b.

� �
read p v b � : This denotes an attempt to read a value from a rendezvous point p. If

a value is available and received, i.e. if there is some other thread writing at the same
point p, the variable v is bound lexically to the received value and is visible from b, at
where execution continues.

� �
wait t b � : This denotes an attempt to wait for time of t seconds and then continuing

with the body b. A wait clause like this becomes active (the body is entered) only if no
output, input, write or read has been possible during the wait period.

A sync form works so that whenever an I/O event becomes possible, it is executed immedi-
ately. If there are multiple potential I/O events that could be carried out at the same moment,
one is chosen nondeterministically. There can be multiple wait clauses in a sync form, but
only the one with the least timeout time t is significant. If there are no wait clauses, thread
waits indefinitely for I/O. In particular,

�
sync � (1.4)

causes the calling thread to block forever.

1.6.2 Examples

The following program denotes a computational process that accepts all inputs from the ex-
ternal world, but remains silent forever:

1 (define (run)
2 (sync (input x (run))))

3 (run)

Note how this works. The procedure run is self-recursive. It calls sync with the only
I/O/ option being to receive a message from the external environment. The message is stored
in the variable x, but actually the value of the variable is never read by the program. The
self-recursive call to run occurs within the

�
input . . . � subform.

Let us next try to define a system that echoes all messages it receives form the external
world back. We could try the following:

1 (define (echo)
2 (sync (input x
3 (sync (output x (echo))))))

4 (echo)

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 6

This program has, however, the problem that it responds back at exactly the same time the
message is received in the first place. The reason is that we shall interpret the Scheme programs
so that they execute in zero time, the only exception to this rule being the wait clauses in sync
forms. But we have decided that two events should never occur at exactly the same time at
a testing interface, because that is not physically possible. Therefore we could postulate that
there is a time delay from one to hundred milliseconds before the answer comes, and write:

1 (define (echo)
2 (sync (input x
3 (sync (wait (� (� 1 (random 99)) 1000)
4 (sync (output x (echo))))))))

5 (echo)

This is in principle correct, but note that now the system does not accept input from the
external world while it is in the manually modeled wait. What if another message is received
at that time? We decide not to implement a buffer (usually operating systems and applications
have multiple buffers to keep track of messages that arrive while other tasks are being carried
out) but to ignore all messages that come “too fast”. However, dropping the messages must
again take some time, because otherwise the original problem of two events at exactly the same
time at the testing interface would be reincarnated. So we get:

1 (define (echo)
2 (sync (input x (wait-and-send x))))

3 (define (wait-and-send x)
4 (sync (input y (wait-and-send x)) ; drop message and wait again
5 (wait (� (� 1 (random 99)) 1000)
6 (sync (output x (echo))))))

7 (echo)

This program should work correctly. Do you understand how it works?
Eventually we might find out that it is a bad idea to drop messages, and that it would

be better to buffer them. Suppose we have an abstract queue data type available with the
usual queue manipulation operations. We can then establish an echo system with a queue as
below. This becomes more complex because we need multiple threads (if we postulate that
we must always be able to receive more data), but this works as a good example on the use of
the internal rendezvous points:

1 (define (producer point queue)
2 (if (empty-queue? queue)
3 (sync (input x (queue-insert! queue x)))
4 (sync (input x (queue-insert! queue x))
5 (write point (queue-front queue) (queue-remove! queue))))
6 (producer point queue))

7 (define (consumer point)
8 (sync (read point x
9 (sync (wait (� (� 1 (random 99)) 1000)

10 (sync (output x (consumer point))))))))

11 (define (run)
12 (let ((queue (make-queue))
13 (point (make-rendezvous-point)))
14 (spawn (λ () (producer point queue)))
15 (spawn (λ () (consumer point)))))

16 (run)

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 7

Chapter 2

Formal Foundations

Our next aim is to defined formally what we mean by traces, operational specifications and
other such interesting objects.

2.1 Traces
We will begin with traces.

2.1.1 Basics

We begin by assuming that we are aware of two sets: a set of input messages, namely messages
that an SUT (of which we are interested of) can receive, and a set of output messages, which are
those messages that the SUT could in principle send. We denote the set of input messages by�

in and the set of output messages by
�

out. We shall assume that these sets are disjoint, i.e.
that

�
in � � out � �

. We do not lose any generality, because we could always just add some
form of “direction marks” to messages to make the input and output message sets separate.

Traditionally, these sets are known as the input and output alphabet, respectively, as stated
below.

DEFINITION 2.1.
�

in is the input alphabet.
�

out is the output alphabet. The sets are disjoint,�
in � � out � �

, and countable. The I/O alphabet is the set
�

in � � out, and is denoted by
�

.

It will be helpful later to assume that there exists a formal object that is outside the I/O
alphabet. We will reserve the Greek symbol τ for this object, again on the basis of tradition.

DEFINITION 2.2. τ denotes an object such that τ �� � . The set
�

extended by τ is denoted by�
τ , i.e. �

τ � � ��� τ � . (2.1)

We stated above that events, which are members of traces, consist of a message, direc-
tion information, and time stamp. Now the direction of a message has been embedded into
the message itself — because the input and output alphabets are disjoint. Time stamps we
represent by nonnegative real numbers. Thus we get the following definition.

DEFINITION 2.3. An event is a pair 	 α, t
 where α
� � and t ��� , t 0.

It is now easy to give the definition of a trace. We require that the event sets of traces finite,
because they must be objects that testers are capable of observing wholly.

DEFINITION 2.4. A trace is a pair 	 E, t
 where E is a finite set of events, all with distinct time
stamps, and t ��� , t 0 such that also for all 	 α, t ��
 � E it holds that t � t � .

We will call the time value t, which denotes the clock reading at the end of a trace, the
trace’s end time stamp. Note that there can be no event in a trace exactly at the end time stamp.
(This is a technicality that ensures that the empty trace 	 � , 0
 will function as a prefix for all
traces, even those where the first event occurs exactly at the moment 0.)

A trace can be a prefix of another trace. A trace T is a prefix of another trace T � if the time
span that T covers is contained in that of T � , and if the events on the common time span are
the same. In other words, we could expect to observe trace T � even after T has been already
observed, because T can be extended to become T � . The formal definition is straightforward:

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 8

DEFINITION 2.5. A trace T � 	 E, t
 is a prefix of trace T � � 	 E � , t �
 if and only if both t � t �
and

E � � 	 α, t̃
�� 	 α, t̃
 � E ��� t̃ � t � . (2.2)

T is a proper prefix of T � if additionally T �� T � . We write T � T � to denote that T is a prefix
of T � , and T � T � to denote that T is a proper prefix of T � . (That is, T � T �
	�� T � T � � T ��
T � .

The trace 	 � , 0
 is of particular interest, because it is the unique empty trace. We reserve the
Greek letter ε for denoting this trace.

As additional terminology, we shall say that if T is a prefix of T � , then T � is an extension
of T. Clearly, being an extension is the “inverse” of being a prefix. But this concept is useful
when we need to speak of, say, the set of all extensions of a given trace T. (Formally, this is
the set � T �� T � T � � .)
DEFINITION 2.6. ε denotes the empty trace 	 � , 0
 .
Example 2.7. Fig. 1.3 depicts the following trace:

	 � 	 A, 0
 , 	 B, 0.1
 , 	 C, 2
 , 	 D, 4
 � , 5
 . (2.3)

Here it must hold that
� A, C, D ��� �

in (2.4)

and
B � �

out. (2.5)

2.1.2 More Constructs

We define here some more mathematical constructs on traces, even though they are not needed
immediately. But this is a good place to introduce them.

We will reserve a notation for the set of all the prefixes of a given trace T:

DEFINITION 2.8. For a trace T, Pfx
�
T � denotes the set of all prefixes of T, namely

Pfx
�
T � � � T � � T � � T � . (2.6)

Example 2.9. In particular, for any T, T � Pfx
�
T � and ε

� Pfx
�
T � .

A trace contains a set of events, and every event has a certain time stamp. It becomes
useful to be able to “pick out” a single event from a trace when its time stamp is known. The
following construct does this job.

DEFINITION 2.10. Let T be a trace 	 E, t
 and κ a clock reading on the interval � 0, t � . We define
the meaning of the expression T � κ to be an element of

�
τ according to the following:

T � κ �
�
α 	 α,κ
 � E
τ ��� α : 	 α,κ
 � E

(2.7)

Example 2.11. Let T � 	 � 	 A, 1
 � , 2
 . Then T � 1 � A and T � 1.2 � τ . T � 3 is not defined because
3 � 2.

If T is a trace 	 E, t
 , we can be interested of that prefix of T whose end time stamp is t � . We
write this prefix as T � t ��� . The exact definition follows.

DEFINITION 2.12. Let T � 	 E, t
 be a trace and let t � � � 0, t � . Then T � t ��� denotes the unique
trace T � of the form 	 E � , t �
 such that T ��� T.

Example 2.13. For example, let T � 	 � 	 A, 1
 � , 2
 . Then T � 1.5 � � 	 � 	 A, 1
 � , 1.5
 , T � 0 � � ε and
T � 0.5 � � 	 � , 0.5
 .

Suppose that we have two traces T and T � such that T is neither a prefix nor an extension
of T � . That is, T �� T � and T � �� T. Clearly, this implies also that T �� T � . Because the two traces
are different, and neither is a prefix of the other one, there must exists the least time stamp at
which the two traces differ. We will denote this time by � �

T, T � � :

DEFINITION 2.14. Let T and T � be two traces such that T �� T � and T ���� T. We define then� �
T, T � � as � �

T, T � � � min t � : T � t � �� T � � t � . (2.8)

Example 2.15. Let T � 	 � 	 A, 1
 � , 2 �
 and T � � 	 � 	 B, 0.8
 , 2 �
 . Then � �
T, T � � � 0.8. Namely,

T � 0.8 � τ but T ��� 0.8 � B. For all t � 0.8, T � t � T ��� t.
c

�
Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 9

2.2 Specifications and Implementations“Lingua Franca is a pidgin, a
trade language used by
numerous language
communities around the
Mediterranean, to communicate
with others whose language
they did not speak.”
–Alan D. Corré

Traces are the lingua franca for discussing the behavior of systems. This is the reason we we
started laying out our formal foundations exactly from the trace concept. We will now move
on to consider specifications, which will denote sets of traces, and implementations, which
will generate traces as an exhibit of their behaviors.

We shall start with specifications.

2.2.1 Specifications

We now turn our attention to operational specifications, which I will call from now on just
“specifications” unless grave misunderstandings were bound to occur.

A specification specifies the “correct behavior” of a system. Correct behavior, however,
is not a fixed, single, linear sequence of operations that a system must perform, but rather
a collection of different execution sequences and subsequences that are valid responses or
reactions to different stimuli. Therefore, in general, the correct behavior of a system can not be
expressed as a single trace, but it can be expressed as a set of traces.

Thus, we take the view that a specification denotes (usually implicitly) a set of traces, which
is the set of all those traces that are “correct”. That is, whenever a system executes, it executes
correctly with respect to a specification if and only if the trace generated by the execution is
found from the set of traces the specification denotes.

Because the set of correct traces denote the set of those linear behaviors that are “correct”,
this set must be prefix-complete. This means that if a certain trace T belongs to the set, then
also all the prefixes of that trace must belong to the set. The reason is that these prefixes contain
strictly less information than the trace T itself. Because T is not faulty, there is nothing wrong
with T but it is correct with respect to the specification, so must all its prefixes be correct.

Furthermore, we shall require that every valid trace has at least one extension into a valid,
longer trace, arbitrarily much further in time. Intuitively, this means that if a trace that ends
at time t is valid, then there must be some valid way to continue execution from time t further.
In yet other words, time must continue forever.1

Finally, the empty traceε must be valid. This and the previous requirement together imply
that a specification must specify at least one infinitely long, valid behavior.

Let us further assume that there is an a priori given set of “potential specifications”. This
could be, for example, the set of all valid English documents, or the set of all syntactically
correct UML diagrams. Its concrete structure is not relevant here. We denote this set by � .

DEFINITION 2.16. � is a countable set of specifications.
For every S � � , Tr

�
S � denotes a set of traces. This is the set of valid traces for S.

The set Tr
�
S � must contain ε, the empty trace.

The set Tr
�
S � must be prefix-complete. In other words, T � Tr

�
S � and T � � T must always

imply that T � � Tr
�
S � .

For every trace 	 E, t
 � Tr
�
S � , it must hold that for every arbitrary constant δ � 0, there

exists at least one set E � such that 	 E � , t � δ
 � Tr
�
S � and 	 E, t
 � 	 E � , t � δ
 (seriality require-

ment).

Let us try to illustrate these ideas graphically. Consider Fig. 2.1. This is a rough sketch
of a prefix-closed set of traces. Time flows in the figure horizontally. Every path from left to
right is a prefix-closed set of traces, or an “infinitely long trace”, if you wish, although we
have not defined such a concept. (The paths are assumed to continue “outside” the diagram
ad infinitum.)

We can draw a line vertically across the figure as is shown. Assume this corresponds to
three seconds since beginning. The paths from t � 0 up to the vertical line now correspond to
traces whose end time stamp is 3.

One path has been drawn as a dashed line; this is the bottommost path that ends with a
cross. Cutting it at t � 3 yields a valid trace. However, the path ends eventually at t � 5. This
means that the prefix-closed set depicted by the figure contains a trace of the form 	 E, 5
 such
that there is no extension of it in the set, i.e. no trace of the form 	 E � , 5 � δ
 for δ � 0 such that
	 E, 5
�� 	 E � , 5 � δ
 .

1This definition implicitly means that all systems with Zeno behaviors must be invalid. See also the
footnote on page 12.

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 10

t = 0 t = 3 t = 5

Figure 2.1: A sketch of a prefix-closed set of traces.

Note that this depicted set of traces contains the empty trace and is prefix-complete by the
graphical construction; what is different from the trace sets of correctly formed specifications
is that there exists at least one trace that can not be extended infinitely.

We can now, hopefully, understand the logical difficulty that would arise if we would
allow sets like this as the meaning of specifications. Namely, assume that the depicted set of
traces would be the set of traces denoted by a specifications. There could exist a system that
would execute, against some environment, on the dashed path. At t � 3 the system would
have generated a trace that would be found from the set of valid traces. However, it would be
already known that after two seconds the system will generate a trace that is invalid. Hence,
the system is already known to be on an invalid execution path — we can not stop the flow of
time!

One could ask, would there be a problem if it could be guaranteed that the executing
system would be “stopped” before t � 5. We shall take the viewpoint that there is no such
a thing as a system stop that stops time. A system that is stopped is a system that does not
accept any input any more and sends no output any more. It still exists in the time; the trace
extensions for a stopped system just happen to be void of any events.

So, back to the question, would the system work correctly or incorrectly at t � 3 (suppose
we stop testing at that point of time). We could argue: correctly, because the generated trace
is part of the set of valid traces. We could also argue even more convincingly: incorrectly,
because it is known with 100% certainty that the system will produce a failing trace after two
seconds, no matter what.

This is a paradox that we are better off avoiding.

2.2.2 Implementations

The next aspect to consider is what is an SUT, and how SUTs produce traces. Let us assume
that there is in general a set of possible systems or possible implementations, and let us denote
this set by � . This set could be, for instance, the set of all syntactically valid C or JAVA programs
that are capable of handling the I/O alphabet

�
, whatever it happens to concretely contain. (It

could contain, for example, all bit strings, or all valid CORBA messages for a certain IDL API).

DEFINITION 2.17. � is a countable set of implementations.

The main feature of an implementation is, certainly, that it can be executed, and that it can
exhibit behavior. We will return to this shortly. Before that, let us consider for a while what is
the relationship between a specification, and implementations that “try to implement it”.

2.2.3 Failure Models

The main problem in black box testing, which formal conformance testing is also about, is that
we do not know the internal structure of the system. In other words, it is not possible even in
theory to deduce information about the correctness of the system by inspecting it “directly”.
This is exactly what the phrase “black box” means here.

On the other hand, in pragmatic black box testing testing engineers make all kinds of
explicit and implicit assumptions about the structure of the system. It is known, for example,

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 11

that bugs are “likely” to occur near the boundaries of valid ranges for certain inputs. This is
well known. The idea of focusing testing in the boundary values is known as the Boundary
Value Pattern.

The Boundary Value Pattern is basically about the following hypothesis: “programmers
tend to make mistakes in handling boundary values”. This can be translated into a slightly
more rigorous form as: “it is more probable that a bug appears at a boundary value than at a
non-boundary value”. This is a probabilistic assumption about the, in general unknown, black
box SUT. Note that the assumption is related to the specification, because the value boundaries
come from the specification. Therefore, an assumption like this about the implementation of the
SUT is (1) probabilistic in nature and (2) linked to the specification.

A model or assumption of how a system might fail is traditionally called a failure model.
We can well follow this terminology, although we shall generalize the idea: we will consider
models of how a particular specification might be implemented, regardless of whether the
implementations are correct or incorrect ones.

The current discussion can be summarized as follows: a failure model maps specifications
to discrete probability distributions over implementations. Let us formalize this.

DEFINITION 2.18. A failure model is a function µ : ���
�

��� � 0, 1 � � such that for every s � � ,

∑
i

µ
�
s � � i � � 1. (2.9)

A failure models gives directly an a priori estimate on the correctness of the SUT — before it
has been tested. We will come back to this point once we have defined more exactly what is a
correct, and what is an incorrect SUT.

2.3 Execution

2.3.1 Testing Strategies

Every implementation has some form of a behavior. The behavior is manifested in traces that
the implementation produces. However, usually a system does not work in isolation, but
within an environment. The environment here is a tester which interacts with the particular
system. We can not know the set of traces a system can produce before we know how it is
being interacted with.

Now the subject of this interaction is the tester process. However, the tester process also
contains the aspect of giving a test verdict, but the test verdict in itself does not affect the
execution of the system under test. Therefore we isolate the aspect of interaction, and call
a particular way of interacting with a black box a testing strategy. We denote the set of all
possible testing strategies with

�
, but do not impose (yet) any further structure on this set.

DEFINITION 2.19.
�

is a countable set of testing strategies.

2.3.2 Generated Traces

A testing strategy and an implementation (against which the testing strategy is executed)
together determine behavior at the testing interface. However, there is not necessarily a single
trace that the combined system produces, but there can by many potential traces that could
be generated. We formalize this in terms of ξ , a semantic function that maps testing strategies

Semantic function is a
function that defines semantics,
for example, execution
semantics. “Semantic” does not
characterize here the structure
of a function, but its intended
use.

and implementations eventually on discrete probability distributions of traces.
We are going to see more complex definitions than until now, so it is useful to spent some

time on informal discussion first.
We shall assume that a long interaction with an SUT does not happen once as an atomic

operation, but that it can be decomposed into steps which we will call in general test steps. A
test step must consume a strictly positive amount of time, albeit arbitrarily small (for example
10 � 8 seconds). During a test step, zero or more I/O steps can occur. For example, during a
test step there could be no I/O, or one hundred messages could be exchanged. So a single test
step in general does not correspond to a single I/O event.

Thus, we need a function that tells us how test steps will follow one another, when a test-
ing strategy and an implementation have been fixed. We formulate this so, that the execution
function ξ gives a discrete probability distribution for the next single test steps in a given
“state of the system”. This “state of the system” corresponds to the observed trace this far; if

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 12

there is any other unknown internal state in the SUT that affects how the execution continues,
it is modeled (as is appropriate) in the probability densities. The test steps in practice are trace
extensions for the current trace history.

We will impose some important restrictions on the function ξ , in addition to the basic
principle that it must return a valid probability distribution. The other restrictions are the
following.

1. All sequences of test steps must be progressive. In practice this means that the end time
stamps of all those traces whose probability is greater than zero must grow eventually
arbitrarily large. What the progressivity requirement excludes is an execution function
that produces test steps whose temporal lengths (= consumed time) form a converging
series. This would mean than an infinite number of test steps could be carried out in a
finite time, which is absurd from a practical point of view.2

For example, test steps could produce a series of traces with end time stamps from
the series 1 � 2 � n. If the first test step would last from t � 0 to t � 1

2 , the second
would last from 1

2 to 3
4 , the third from 3

4 to 7
8 and so on. Every test step would have a

strictly positive time span. Still, infinitely many test steps would be taken before t � 1.
In addition to causing complications in the formal theory, this would be also patently
absurd in the real world.

2. If two trace extensions have non-zero probabilities for a given already-executed trace,
implementation and testing strategy, then neither of the extensions is a (proper) prefix
of the other one. This basically means that any two possible continued executions (test
steps) that are distinct must differ in I/O events, and do so at a moment of time that is
present in both of the extended traces.

This restriction has a different flavor than the first one. The first restriction excludes
physically impossible scenarios that cause all kinds of havoc for formal analysis. The
current (second) restriction makes definitions easier, but has in principle no pragmatic
meaning. From some point of view it is sensible to consider a testing strategy that
chooses randomly between “testing steps” of variable temporal span (= length). But
this possibility is in no way excluded by this restriction, because the “testing steps”
here do not need to coincide with the formal test steps that we are defining.

We shall now attempt a formal definition. Let
�

denote the set of all traces.

DEFINITION 2.20. ξ is a function

ξ : ��� � �
�
�

� �
� � 0, 1 � � (2.10)

with the following properties.
The function gives a discrete probability distribution:

∑
T �

ξ
�
i, s, T � � T � � � 1. (2.11)

Traces with non-zero probability are proper extensions of the previous trace: For all
i � � , s � � , T, T � � � it holds that

ξ
�
i, s, T � � T � � � 0 � � T � T � . (2.12)

All test step sequences are progressive: There does not exist an infinite sequence of traces
T0, T1 , T2, . . . and a constant K ��� such that ξ

�
i, s, Ti � � Ti � 1 � � 0 for all i 0 but such that for

all Ti � 	 Ei, ti
 , it holds that ti � K.
A potential trace extension is not a prefix of another potential trace extension:

ξ
�
i, s, T � � T1 � � 0 � ξ

�
i, s, T � � T2 � � 0 � T1 �� T2 � � T1 �� T2 � T2 �� T1 . (2.13)

2The progressivity of test steps indirectly also eliminates the possibility of what is known as Zeno
behavior. The reason is that every trace can contain only a finite number of events, because we have defined
that traces must be finite in this sense. The remaining details can be reconstructed by an interested reader.
If you do not know what Zeno behavior is, you can safely ignore this subject here. Not to say it would not
be important in general.

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 13

2.3.3 Trace Probabilities

Now that we have defined execution via this function ξ that gives us the probabilities for
single test steps, it is natural to ask what is the “composed” probability for a trace that is gen-
erated by multiple test steps. We expect this to be the product of the individual transition
probabilities, which is correct in principle. But what about traces that do not appear “in be-
tween” test steps, but that are terminated “during” a test step? We can and must take these
into account, but this requires an extra technicality.

Let us state the problem of this composed probability in clear terms. Suppose that we
repeat many times the following experiment. Starting from an empty trace, we execute a
testing strategy against an implementation until the end time stamp of the trace generated
(i.e. observed) is over a constant K. That is, a trace 	 E, t
 has been produced such that t � K.
What is the probability that T, a given trace with end time stamp K, is a prefix of this trace?
In other words, how likely is that we will observe a trace that begins with T on any particular
trial?

Let us denote this sought-for probability by P � i, s, T � . (i is the implementation, s the speci-
fication.)

As an intermediary technical device, let us denote by P � � i, s, T � the maximum over all
finite sequences ε � T1 , . . . , Tk � T of the following expression:

∏
i ��� 1,k � 1 �

ξ
�
i, s, Ti � � Ti � 1 � . (2.14)

Intuitively, if this expression yields something else than zero, then it gives the probability
for producing trace T by the execution process that I explained above. Given this intuition,
we would expect the value to be unique. This can be stated clearly:

Proposition 2.21. For any trace T, there exists at most one sequence of traces for which expression
(2.14) yields something else than zero.

Proof. For the sake of contradiction, assume T to be such a trace such that there exist two
distinct sequences X1 , . . . , Xk and Y1, . . . , Yn such that X1 � ε, Y1 � ε, Xk � T, Yn � T, and
such that

∏
i ��� 1,k � 1 �

ξ
�
i, s, Xi � � Xi � 1 � � 0 (2.15)

and
∏

i ��� 1,n � 1 �
ξ

�
i, s, Yi � � Yi � 1 � � 0. (2.16)

Because the X-sequence and the Y-sequence are distinct, there must exist a ��� k, n such that
for all 1 � i ��� , Xi � Yi, but such that X ���� Y� . Now both X � and Y� must be prefixes of T.
Hence, there are two distinct test steps from X �

� 1 with non-zero probabilities such that one
of the extended trace is a prefix of the other. This is against the definition of ξ . Thus we have
reached a contradiction.

Now the problem that remains is that there can be traces that, by the same intuition, can
be expected to have non-zero probabilities of occurrence, but P � is still zero for them. These
are traces that occur “during” test steps. For example, suppose

ξ
�
i, s,ε � � T � � 1 (2.17)

and that ε � T � � T. Clearly, we would expect P � i, s, T � � � 1 also. But P � � i, s, T � � � 0 (this is
easy to verify).

The idea in general is to find the longest prefix for a trace T that has a probability defined
by P � , and then derive the probability for T from that. The following proposition is needed:

Proposition 2.22. For any trace T, there exists a maximal prefix of T, which we will denote by T̃, that

It is standard nomenclature to
speak of “a maximal X” in a
context like this. But maximal
according to what? The
ordering can be left
unmentioned if it is implied and
there is no danger of confusion.
Here, naturally, the prefix should
be maximal in the ordering � ,
i.e. temporally longest possible.

has the property that P � � i, s, T̃ � � 0.

Proof. There exists at least one such prefix, namely ε, for which P � � i, s,ε � � 1. Hence, it is
enough to show that the set of prefixes T � of T for which P � � i, s, T � � � 0 is finite. But this stems
directly from the requirement that test steps are progressive, because if the set of such prefixes
would be infinite, and infinitely many test steps could be produced before reaching T, i.e. in
finite time.

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 14

Tester SUT

A

C

D

Bt = 0.1s

t = 2s

t = 4s

t = 0s

t = 5s

Figure 2.2: A trace (copy of Fig. 1.3).

C DB [0.1s]A

1 2 3 4 50

Figure 2.3: An alternative representation of the trace in Fig. 2.2.

Intuitively, this states that when we go through the prefixes of T, starting from the longest
prefixes and moving toward the shorter ones, we will find a prefix with non-zero probability.
If nothing else, then the prefix ε, for which P � � i, s,ε � � 1 regardless of i and s.

Let thus T̃ be the maximum (proper or trivial) prefix of T with non-zero P � � i, s, T̃ � as in the
proposition above. Then the probability of the trace T is given by

P � i, s, T � � P � � i, s, T̃ � �
�

∑
T � :T � T �

ξ
�
i, s, T̃ � � T � ��� . (2.18)

The idea here is the following: every test step from T̃ will produce a trace that is no longer
a prefix of T. This stems from the fact that T̃ was chosen a the maximal prefix of T that has
a probability defined by P � , i.e. that is the “result” of a test step. We go through the next test
steps from T̃, and add together the probabilities of those test steps that produce extensions of
the trace T. This sum is multiplied by the known probability of T̃, and we are done.

As a sanity check, note that if T � T̃, the sum in (2.18) always yields 1. Hence, in this case,
P � i, s, T � � P � � i, s, T � .

On the other hand, if T cannot be produced by a testing strategy and an implementation,
it should be that P � i, s, T � � 0. Because T̃ is bound to have a non-zero probability (recall that T̃
could be ε), the sum in (2.18) must yield zero. This means that after the longest prefix T̃, every
possible test step will produce something that differs from T. This is, again, correct.

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 15

A B [0.1s]

C D

1 2 3 4 50

p=0.6

p=0.4

Figure 2.4: Graphical representation of execution.

2.3.4 Graphical Sketches and Examples

Let us attempt to concretize these ideas. In Fig. 2.2 I have reproduced an example trace from
the first chapter. This trace is, in the formal framework, the following mathematical object:

	 � 	 A, 0
 , 	 B, 0.1
 , 	 C, 2
 , 	 D, 4
 � , 5
 . (2.19)

(Make sure that you understand this notation before you proceed further.)
We could invent an alternative graphical representation for this trace along the lines in

Fig. 2.3. Here, I have used solid (black) circles to denote inputs to SUT, and hollow (white)
circles to denote outputs. Time scale is now linear and plotted in the horizontal direction. The
hollow box denotes the end of the trace. Note that the trace of Fig. 2.2, the alternative drawing
in Fig. 2.3, and the expression in (2.19) all attempt to denote the same mathematical object.

Assume now that we have a particular implementation i and a testing strategy s, and that
we want to illustrate how a given execution function ξ “works” for i and s. We could do this
as in Fig. 2.4. This figure attempts to illustrate three individual test steps. Let us go through
the figure in detail.

The gray diamonds denote test step boundaries. When the execution begins, there is a test
step with probability 1 that takes 1.5 seconds of time, during which A and B are exchanged at
the moments indicated by the horizontal time axis. Formally, we write this down as:

ξ
�
i, s,ε � � 	 � 	 A, 0
 , 	 B, 0.1
 � , 1.5
�� � 1 (2.20)

This equation says that the probability for the trace

	 � 	 A, 0
 , 	 B, 0.1
 � , 1.5
 (2.21)

which is exactly the trace up to the first gray diamond in the current figure is 1, when execution
continues after the empty trace (ε), i.e. actually starts at the beginning.

After the first gray diamond there is a branch. The upper branch has been indicated to
have the probability of 0.6. This can be written in the mathematical notation as:

ξ
�
i, s, 	 � 	 A, 0
 , 	 B, 0.1
 � , 1.5
 � � 	 � 	 A, 0
 , 	 B, 0.1
 , 	 C, 2
 , 	 D, 4
 � , 5
�� � 0.6 (2.22)

This says that after the trace (2.21), the probability for the extended trace

	 � 	 A, 0
 , 	 B, 0.1
 , 	 C, 2
 , 	 D, 4
 � , 5
 (2.23)

is 0.6, the same probability that is indicated in the figure. (You should ascertain yourself that
(2.21) is really a proper prefix of (2.23).)

The lower branch, similarly, can be written down mathematically as

ξ
�
i, s, 	 � 	 A, 0
 , 	 B, 0.1
 � , 1.5
 � � 	 � 	 A, 0
 , 	 B, 0.1
 � , 4
�� � 0.4 (2.24)

Implicitly, then, for all other traces T,

ξ
�
i, s, 	 � 	 A, 0
 , 	 B, 0.1
 � , 1.5
 � � T � � 0. (2.25)

This is mandated by (2.11).
The probability for the trace (2.23) is 0.6. This means that if we produce a long enough

trace by executing s against i, then the probability that (2.23) is its prefix is exactly 0.6

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 16

2.3.5 Use of Test Steps

Let us now stop for a moment of reflection. It seems that there are at least three different ways
to measure the “length” or “size” of a trace, when the trace has been generated in the context
of the execution of a testing strategy against an implementation.

First, the temporal length of a trace, which is the time difference between the end time stamp
and the clock reading zero, meaningfully characterizes a size of the trace. For example, the
temporal length of the trace (2.23) is 5.

Secondly, the number of events in a trace somehow characterizes the “weight” or “complex-
ity” of the trace. For example, the number of I/O events in the trace (2.23) is 4.

Third, the number of test steps that were required to produce a trace gives a measure on the
size or length of the trace. For example, the number of test steps required to create the trace
(2.23) in the context of the preceding example is 2.

What is the use of all these distinct measures? Do they have a use? Why have we created
the concept of test steps? What is the use for test steps? Let me try to answer these questions
next.

The first thing to say is that the number of events in a trace is almost completely immaterial.
Often people assume otherwise, instinctively. But given a sound theory of timed execution,
silence becomes as important as non-silence, transmission as important as non-transmission.
So the only thing that really interests us in the number of events is that the number of events
must be finite. Otherwise, the count does not matter much.

The temporal length of a trace is important, mostly because being temporally shorter than
another trace is a prerequisite for being a prefix of the other one. But note carefully that we do
not want to link the temporal length of a trace (i.e. the amount of time the trace “consumes”
in the real world) with any sort of cost of the trace, because we do not know the cost of time,
and any such cost could be a nonlinear function of time spent.

At this point it might be guessable that we will link the number of test steps with the cost
of testing. So, one use of the test steps will be that we shall assume that every test step costs a
constant amount of. . . whatever. Because the amount is constant, we can dispense with units
and just call it the “unit cost”, or, more compactly, “1”.

Of course, test steps have been also introduced as a technical device for defining probabil-
ities for arbitrarily long traces that result from execution (because of the definition of a trace,
every single test step spans only a finite time interval).

2.4 Correctness of Behavior
We know now how a testing strategy and an implementation together create behavior. Namely,
to recapitulate the previous discussion, we assume that there exists a function ξ that describes
this, in terms of trace extension probabilities. This is not begging the question, even if it
would seem to be. We really can not give a more detailed description of ξ , because we have
not fixed yet what the specifications and testing strategies actually are. The properties of ξ

and the related definitions form a framework where concrete execution semantics can be later
embedded.

So we have behavior. But the crucial question from the testing point of view is: is the
behavior correct? Let us now move on to consider this topic.

2.4.1 Correct Behavior

A particular behavior, i.e. a trace that has been observed, is not correct or incorrect in isolation.
Even an operating system crash could be correct behavior for the operating system, because it
might have been a deliberate decision not to protect an operating system from crashing in the
situation of, say, a completely buggy device driver being injected into the kernel space. The
correctness or incorrectness of a behavior is always with respect to a specification.

We have already assumed that every specification can be mapped to a (prefix-complete)
set of valid traces. This gives us a straightforward way to define what is correct behavior with
respect to a specification:

DEFINITION 2.23. Let T be a trace and S a specification, i.e. a member of the set � . The trace
T is correct with respect to S if and only if T � Tr

�
S � .

(Recall from Def. 2.16 that Tr
�
S � is the set of traces associated with S.)

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 17

SUT

t = 0s

Environment

t = 1s

t = 2s

t = 3s

A

B

C

D

Figure 2.5: A trace from a specification.

2.4.2 Types of Incorrect Behavior

Incorrect behavior is behavior that is not correct. Is it so simple?
No. The reason is that, as it will turn out, there are two agents that can produce incorrect

behavior in a testing setup. The first is the SUT. The second is the tester, actually the testing
strategy.

Clearly the SUT could produce incorrect behavior. After all, this is the reason why we test.
But how can the tester produce incorrect behavior? The answer is simple. It could produce
illegal input — which includes not producing input at all when it would be required.

The question becomes: what is illegal input? Do specifications need to mention those
inputs that are illegal? But the answer is deceptively simple: the specifications already mention
all illegal inputs and lacks of inputs. Namely, the definition of a trace is completely symmetric
with respect to inputs and outputs, and a specification specifies correct behavior in terms of a
set of traces. Therefore, in the same way as a set of traces describes potential failures of a SUT,
it describes potential failures of a tester. Let us make this concrete through an example.

Consider the trace in Fig. 2.5. Assume that we have a specification S such that every trace
in Tr

�
S � is either a prefix of this trace, or then this trace is a prefix of it. This means that the

only correct way to work with a black box that falls under this specification is to exchange the
messages A, B, C and D at exactly those times that are shown in the figure.

Assume that we produce during testing the following traces:

T1 � 	 � 	 A, 0
 , 	 Z, 1
 � , 1.5
 (2.26)

T2 � 	 � 	 A, 0.5
 , 	 Z, 1
 � , 1.5
 . (2.27)

Neither T1 nor T2 belongs to the set Tr
�
S � . Hence, both of them correspond to incorrect

behavior. But intuition tells us (hopefully) that T1 is somehow “a problem in the SUT”, where
as the trace T2 is “a bug in the tester”, because the tester does not send A to the SUT at time zero
as required by the specification. Clearly, there is nothing the SUT could do better to remedy
this problem, because the tester is outside its control!

Before we attempt a more rigorous treatment, consider the (another) trace in Fig. 2.6. As-
sume that the specification S contains also all the prefixes and suffixes of this different trace.
Assume further that we produce during testing the following trace:

T3 � 	 � 	 A, 0
 � , 1.5
 . (2.28)

First note that this trace T3 is not correct with respect to the modified specification, because
at time 1 there should be either the transmission of A from the environment (= the tester) to
the SUT, or the transmission of B from the SUT to the environment. But if this behavior has
been produced during testing, whose fault is it? You should be able to see that either the SUT or

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 18

SUT

t = 0s

Environment

t = 1s

t = 2s

t = 3s

A

C

D

A

Figure 2.6: Another trace from a specification.

the tester could have remedied the problem by doing something at time 1, and it is impossible
to put the blame on either one of the two communicating subjects alone.

This informal discussion, based on an example, suggest that we can divide failures into
three categories: (1) Failures of the SUT. (2) Failures of the tester. (3) Strange, border case
failures where the scapegoat is not well defined at all.

It must be noted that it is not uncommon for specifications to exclude certain inputs in
certain situations. There are many reasons to do so.

A convincing example from the physical world is the following. There is a button in an
elevator. Interactions with the button are modeled as two messages that can be transmitted
from the environment to the elevator: ”button down” and ”button up”. Because it is physi-
cally impossible to put the button down twice without it popping up between, a tester that
would somehow anyway produce a sequence of two ”button downs” without any ”button
up” between would be doing something that could reasonably be expected to be excluded
from a specification. So the tester would be erroneous. (This example is, to my best knowl-
edge, originally due to professor Antti Valmari.)

Another similar example comes from modeling synchronous calls to a single-threaded
JAVA API as one request message, denoting the start of the call, and an answer message, de-
noting the return of the call. Because the single-threadedness of the API prohibits two si-
multaneous calls, a tester attempting to initiate two calls concurrently (sending two request
messages without waiting for an answer message) would work incorrectly.

There can be also, in general, contracts in interfaces and APIs that prohibit certain opera-
tions in certain conditions. For example, the UNIX manual for the C standard library call free
states:

free() frees the memory space pointed to by ptr, which must have been returned
by a previous call to malloc(), calloc() or realloc(). Otherwise, or if free(ptr) has
already been called before, undefined behavior occurs. If ptr is NULL, no operation
is performed.

This means that for a tester it would be illegal to attempt to free twice a memory block,
because it has been stated that the system does not need to be able to cope with it (this is the
essence of “undefined” behavior).

2.4.3 Verdicts
We move now on to formally classify incorrect traces into the three groups just mentioned.
This is a good point to introduce the verdicts, so let us do so first, however.

A verdict is a testing result. It is a judgment on an executed test run. An executed test run
is a trace. So a verdict is a judgment on a trace, and it is based on a specification. We will use
the following verdicts:

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 19

PASS. The PASS verdict means that the test run contains nothing that would imply that the
SUT works incorrectly. Furthermore, the tester has also worked correctly, i.e. there have been
on bad inputs or other out-of-specification behavior by the tester. If all test attempts against
an SUT result in verdict PASS, project managers are often happy.

FAIL. The FAIL verdict means that a test run has been produced that implies that the SUT
works incorrectly. At least until the first deviation of the SUT from the specification, the tester
has played by the rules. The FAIL verdict means, thus, that the system is incorrect. It does not
conform to its specification.

ERROR. The ERROR verdict means that the tester has deviated from the specification before
the SUT has done anything against the specification. The test run has become void; it has no
meaning, because inputs to the SUT have escaped the realm of the specification. In particular,
the ERROR does not imply in any way that there would be an error in the SUT.

INCONCLUSIVE. The INCONCLUSIVE verdict is a PASS verdict with an extra connotation:
that there was some feature to be tested or some other testing goal to be met during the test
run, which was not met successfully. In the same sense as PASS and FAIL can be given only
with respect to a specification, the INCONCLUSIVE verdict is only possible if there is an addi-
tional test purpose. We will return to test purposes only later, so we will not see the INCON-
CLUSIVE verdict actually for a while.

As a matter of fact, the condition of not meeting a test purpose is orthogonal to divi-
sion between the three main verdicts (PASS, FAIL, ERROR). Therefore we could envision hav-
ing verdicts like PASS-INCONCLUSIVE, FAIL-INCONCLUSIVE and ERROR-INCONCLUSIVE. The
reason that we do not mind to make a distinction between the hypothetical verdicts FAIL-
INCONCLUSIVE and FAIL-CONCLUSIVE is that the verdict FAIL means that the SUT is in any
case incorrect, regardless of any test purposes whatsoever, and that is usually a big problem.
The distinction between meeting or not meeting a test purpose is practically important only
when the SUT works correctly. Furthermore, after some thinking it may dawn that the hypo-
thetical verdict FAIL-CONCLUSIVE could be a very rare beast indeed.

CONFUSED. The CONFUSED verdict is not a standard one. We reserve this verdict to de-
note a case where an observed test run is erroneous, but the specification cannot be used to
determine whether the error has occurred on the SUT side or on the tester side. In practice,
we would like to consider those specifications as erroneous that can produce CONFUSED as
a testing result, so this is a verdict should not pop out in practice. For the case in which this
verdict is given, see Sec. 2.4.5.

We let � denote the set of the four verdicts above:

DEFINITION 2.24. We denote by the set � the set � PASS, FAIL, ERROR, INCONC, CONF � .

2.4.4 Failure Types

We have already defined that a trace T is correct with respect to a specification S if and only if
T � Tr

�
S � . Therefore, let us now focus on the case T �� Tr

�
S � , i.e. to the case where the trace T

is in general incorrect and out of the specification S.
Suppose T � 	 E, t
 . Let V be the intersection Pfx

�
T � � Tr

�
S � , i.e. let it be the set of valid

prefixes of T, and let K be the set of end time stamps in this set, i.e.

K � � t � � E : 	 E, t
 � V � . (2.29)

(Note that this set can, in principle, be either open or closed. In any case, it is a connected
interval because V itself is prefix-closed.)

For every δ
� K, denote by Xδ the set of every such a valid trace that extends a δ-prefix of

T and whose end time stamp is past t. That is,

Xδ � � 	 E � , t �
 � T � δ � � 	 E � , t �
 � 	 E � , t �
 � Tr
�
S � � t � � t � . (2.30)

Note that for any δ
� K, T � δ � � Tr

�
S � by construction. Furthermore, note that because T is

invalid, and every trace in Xδ for any suitable δ is valid, T as a whole can not be a prefix of
any element of Xδ for any δ. This stems from the fact that Tr

�
S � is prefix-complete. On the

other hand, because the end time stamp of every trace in Xδ is past that of T, an element of Xδ

can not be a prefix of T. Hence, for any U � Xδ , � �
T, U � must be defined.

Therefore, denote by Dδ the set

� α � α � � � � U � Xδ :
�
T � ��� T,U � � τ � α � U � ��� T,U � ��� �

T � ��� T,U � � α � � . (2.31)

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 20

This is, intuitively, the set of all possible I/O events that cause the first difference between any
trace in Xδ and the trace T. However, the definition is not symmetric. If at the first time stamp
where the trace T differs from a valid trace U, there is an event at the trace T, we count that
event and ignore any event whatsoever in trace U. If at the trace T there is silence (τ), and
there is an event in trace U, we count that event.

The idea is now to find a δ near the upper bound of K such that the set Dδ consists solely
of input events, or solely of output events.

For instance, assume that we choose δ from K so that the set Dδ consists only of the el-
ements of

�
in. What does this situation tell us about the reason for why T was outside the

specification, i.e. why T was invalid?
We know that T � δ � is a valid trace. Hence, there would have existed at least one valid

continuation after T � δ � . However, in the testing setup no valid continuation was chosen, but
eventually, before time t, something illegal happened. Now every element of Xδ represents a
valid continuation from T � δ � . That is, every element of Xδ is a valid trace that is identical with
T at least until time stamp δ, but that differs from T before time stamp t. Now we assumed that
Dδ

� �
in. Thus, every valid extension of T � δ � differs from T initially by either the removal, change,

or addition of an input event. These all changes are ones that only the tester can effect. Thus,
after time δ, only the tester could have changed the course of the execution so that it would
have been conforming to the specification. Hence, the fact that T was invalid was caused by
the tester.

Similarly, if we find a δ near from K so that Dδ � �
out, then the only instance that could

change the course of execution to a conforming one after time stamp δ is the SUT. In this case,
the SUT is the cause for the failure.

We can summarize this as follows.

DEFINITION 2.25. Let S be a specification and T � 	 E, t
 a trace such that T �� Tr
�
S � . Let K be

the set
� t � � � E � : 	 E � , t �
 � Pfx

�
T � � Tr

�
S � � . (2.32)

For any δ
� K define Xδ as in (2.30) and Dδ as in (2.31). The trace T is an input failure if there

exists δ
� K such that

Dδ � �
in. (2.33)

Similarly, the trace T is an output failure if there exists δ
� K such that

Dδ � �
out. (2.34)

If the trace T is neither an input nor an output failure, it is a shared failure.

Example 2.26. Let us consider an example. Let S be a specification such that

Tr
�
S � �

�
� Pfx

� 	 � 	 A, t
 , 	 B, t � δ
 � , t � δ � 1
 � � t � � 0, � � , δ � �
0, 1 � � . (2.35)

That is, any trace T is valid if either it is silent (no events), or if there is the input of A, and the
trace ends not later than one seconds since the time stamp of A with no other events, or if A
is followed by B not later than one second after A. Let A � �

in and B � �
out.

For instance,
	 � 	 A, 4
 , 	 B, 4.2
 � , 9
 (2.36)

is a valid trace but
	 � 	 A, 4
 , 	 B, 6.2
 � , 9
 (2.37)

is not, neither is
T � 	 � 	 B, 4
 � , 5
 . (2.38)

Let us consider this trace T further. It is invalid. On the other hand, T � 4 � � 	 � , 4
 is a
valid trace. For any t � 4, T � t � is invalid. Hence, in terms of the previous discussion, we have
K � � 0, 4 � . We choose a δ from K as δ � 4.

Let us to compute Xδ, i.e. X4. This is the set

X4 � � 	 E, t
�� 	 E, t
 � Tr
�
S � � t � 4 � 	 E, t
 � 4 � � 	 � , 4
 � . (2.39)

Every element of X4 is of one of the following forms:

	 � , t
 t � 4 (2.40)

	 � 	 A, t �
 � , t
 t � 4, 4 � t � � t, t � t � 1 (2.41)

	 � 	 A, t �
 , 	 B, t � �
 � , t
 t � 4, 4 � t � � t � � � t, t � t � � � 1 (2.42)

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 21

Let U be of the form (2.40). Then � �
U, T � � 4, U � 4 � τ and T � 4 � B. Here we count B to the

set D4. For the second form, � �
U, T � is again 4, in which case we count again B from T � 4. The

same holds for the last form. Therefore, D4 � � B � . Thus, the failure is an output failure: the
SUT incorrectly outputs B before receiving stimulus A.

Example 2.27. At this point you almost certainly wonder on the complexity of the definitions
which are used here to obtain the clearly obvious result in the previous example. You may
have noticed that there is a hint of a limit construction. But where is the limit construction
needed? The answer is: when the set K is open.

Let S be now a specification such that

Tr
�
S � �

�
� Pfx

� 	 � 	 B, t
 � , t �
 � � t � � 0, 1 � , t � � 1 � . (2.43)

Intuitively, this specifies that the SUT must send the message B out before the time 1. As-
sume that we have at hand the trace

T � 	 � , 2
 . (2.44)

Clearly T �� Tr
�
S � . Now T � 1 � is not a valid trace, but for any ε � 0, T � 1 � ε � is. Hence

K � � 0, 1 � .
We can choose δ from K e.g. as δ � 0.5 (the choice does not matter). The valid extension for

T � δ � all differ from T strictly before time stamp 1 by introducing the output B. Hence D0.5 �
� B � , there has been an output failure. However, attempting to choose δ � 1 (incorrectly,
because 1 �� K), we would find out that there are no valid extensions of T � 1 � , because T � 1 � is
invalid!

Example 2.28. Yet, let us consider a specification S such that

Tr
�
S � �

�
� Pfx

� 	 � 	 B, t
 � , t �
 ��� t � � 0, 1 � , t � � 1 � �
�
� Pfx

� 	 � 	 A, t
 � , t �
 ��� t � � 0, 1 � , t � � 1 � . (2.45)

We assume, as before, A � �
in and B � �

out. Consider again the trace

T � 	 � , 2
 . (2.46)

for which it holds that T �� Tr
�
S � . Again, K � � 0, 1 � .

Regardless of our choice of δ � 1, there always exists two forms of valid extensions for
T � δ � : those, where the first event is A, and those, where the first event is B. This yields (you
could verify this)

Dδ � � A, B � . (2.47)

Hence, we have a shared failure.
Intuitively, S specifies that either the tester or the SUT must send out a message before time

1. When neither of the entities sends a message, it is impossible to put blame solely on one of
the two.

2.4.5 Calculating Verdicts

Now that we have been able to classify “low-level” failures into (1) input, (2) output, and (3)
shared failures, we will link these failure types to the different testing verdicts.

DEFINITION 2.29. Let T be a trace and S a specification. The correct verdict for T is calculated
as follows.

1. If T � Tr
�
S � , then the verdict is PASS.

2. Otherwise, if T is an output failure with respect to S, the verdict is FAIL.

3. Otherwise, if T is an input failure with respect to S, the verdict is ERROR.

4. The remaining case is that T is a shared failure with respect to S. The verdict is CONF.

The correct verdict for T with respect to S is denoted by verdict
�
T, S � .

Note that the verdict function never returns INCONC. The reason is that no test purposes
have been introduced yet. The verdict INCONC can be given only when there is a test purpose
involved.

The different verdicts have been summarized in Table 2.1.

c
�

Antti Huima 2004. All rights reserved.

HUT / TCS / T-79.190: Testing of concurrent systems / 2004 22

Verdict Description
PASS SUT was tested correctly and it behaved correctly.
FAIL SUT was tested correctly but it failed to produce correct behavior. There

is a problem with the SUT.
ERROR The SUT worked correctly until the tester began to test it in an incorrect

fashion. There is a problem with the tester, because it puts the SUT into
an environment that is outside the specification.

CONF There is something strange going on, but the specification is ambiguous
and it is impossible to pinpoint whether the tester or the SUT is working
badly. The specification must be corrected.

INCONC In principle PASS, but a test purpose has not been met.

Table 2.1: A summary of the different testing verdicts.
.

Exercises
Exercise 2.1. Consider the following set of traces:

T1 � 	 � 	 A, 1
 , 	 B, 2
 � , 3
 (2.48)

T2 � 	 � 	 A, 1
 , 	 B, 1.5
 � , 2.5
 (2.49)

T3 � 	 � 	 A, 1
 , 	 B, 2
 , 	 C, 3.5
 � , 4
 (2.50)

T4 � 	 � 	 A, 1
 , 	 B, 2
 � , 4
 (2.51)

T5 � 	 � , 0
 (2.52)

T6 � 	 � , 1
 (2.53)

Enumerate all pairs
�
i, k � such that Ti � Tk.

Exercise 2.2. Prove that the relation � is reflexive, transitive, and antisymmetric.

Exercise 2.3. Show that T � T � implies Pfx
�
T � � Pfx

�
T � � .

Exercise 2.4. Compute the correct verdict for the following cases. S is a specification, T is a
trace. Calculate verdict

�
T, S � . Assume

�
in � � A � and

�
out � � B � .

Case 1:

Tr
�
S � � � 	 � , t
 � t 0 � (2.54)

T � 	 � 	 A, 2
 � , 3
 (2.55)

Case 2:

Tr
�
S � �

�
� Pfx

�
T ��� T � � 	 � 	 A, 1
 , 	 B, 2
 � , t
 � t � 2 � � (2.56)

T � 	 � 	 A, 1
 , 	 B, 1.5
 � , 2
 (2.57)

Case 3:

Tr
�
S � �

�
� Pfx

�
T ��� T � � 	 � 	 A, 1
 , 	 B, 2
 � , t
 � t � 2 � � (2.58)

T � 	 � 	 A, 1.2
 , 	 B, 2
 � , 2
 (2.59)

Case 4:

Tr
�
S � �

�
� Pfx

�
T ��� T � � 	 � 	 A, 1
 , 	 B, 2
 � , t
 � t � 2 � � (2.60)

T � 	 � , 0.5
 (2.61)

Exercise 2.5. In this exercise we consider the progressivity of specifications.
Let S be a specification. Prove that there does not exist a constant K and an infinite se-

quence of traces 	 E1, t1
 � 	 E2, t2
 ������� such that (1) for all i, 	 Ei , ti
 � Tr
�
S � ; (2) for all i,

ti � K, and (3) for any N, there exists i such that � E � i � N.

Exercise 2.6. Prove that if T is an input failure with respect to S, then it cannot be an output
failure, and vice versa.

c
�

Antti Huima 2004. All rights reserved.

