
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T-79.186 Reactive Systems
On-the-fly Model Checking and Abstraction

Spring 2005, Lecture 9

Keijo Heljanko
Keijo.Heljanko@tkk.fi

– 1/17



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

On-the-fly Model Checking

An model checking algorithm, which can terminate “early”
with a yes/no answer to a model checking question, is
called an on-the-fly model checker.

For example, in LT L model checking we can find the fol-

lowing three phases.
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On-the-fly LTL Model Checking

1. Generation of a Büchi automaton A¬ f

2. Calculation of the product automaton
P = AM ⊗A¬ f , where often
AM = A1⊗A2⊗·· ·⊗A n. Thus, in fact, in practice
the product is simultaneously composed out of n+1
automata as follows: P = A1⊗A2⊗·· ·⊗A n⊗A¬ f .

3. Checking the emptiness of the product automaton P ,
i.e., whether L (P ) 6= /0.

– 3/17



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

An “on-the-fly LT L model checker” in practice combines
the phases 2 and 3 above into one subroutine.
A popular candidate for the phase 3 is to use the nested
DFS algorithm, with initial states and the successor
relation provided by a subroutine implementing the phase
2 automata synchronization.
In practice phase 1 is run off-line, because doing so
provides many optimization possibilities which are hard to
do on-the-fly.
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An on-the-fly CT L model checker can be done in a
similar fashion. This, however, requires the use of a CT L
model checking algorithm, which does not require the
predecessor relation. This slightly complicates algorithm
design, but suitable algorithms do exist. (See again the
Master’s Thesis by K. Heljanko for an overview.)

For an on-the-fly CT L∗ model checker one needs a
(global) on-the-fly LT L model checker. Implementing it
based on the nested DFS can be non-optimal, and
possibly an algorithm based on Tarjan’s MSCC algorithm
should be used instead.
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Abstraction

We have had talks about abstraction already in this
course, so here is just a slightly different view of things.
We will introduce Kripke structure equivalences and
preorders.
The notions will then be used to describe what kinds of
manipulations will preserve formulas of the logics LT L,
CT L, and CTL∗.
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Bisimulation

Bisimulation is the equivalence which is characterized by
the logic CT L∗.

Definition 1 Let M = (S,s0
,R,L) and

M′ = (S′,s0′
,R′

,L′) be Kripke structures with the same
set of atomic propositionsAP.
A relationB ⊆ S×S′ is abisimulation relation iff for all
s ∈ S,s′ ∈ S′, if B(s,s′) then the following conditions
hold:

L(s) = L′(s′)
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For everys1 ∈ S such thatR(s,s1) there iss1
′ ∈ S′

such thatR′(s′,s1
′) andB(s1,s1

′)

For everys1
′ ∈ S′ such thatR(s′,s1

′) there iss1 ∈ S
such thatR(s,s1) andB(s1,s1

′)

Two Kripke structures M and M′ are bisimulation equiv-

alent (denoted M ≡ M′) iff there exists a bisimulation B,

such that B(s0
,s0′).
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Bisimulation and CT L∗

The following theorem states that bisimulation preserves
CT L∗:

Theorem 2 If M ≡ M′ then for everyCT L∗ formula f , it
holds that
M |= f iff M′ |= f .
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Thus, if one can prove that some manipulation of a model
results in a (hopefully much smaller) Kripke structure M′,
which is still bisimulation equivalent to the original Kripke
structure M, we can do the following.
Model check any CT L∗ formula f on M′ instead of M. (To
save memory and space.)
Unfortunately, most of the manipulations on model level
do not preserve bisimulation, as bisimulation requires that
the branching structure of the program is preserved.
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Theorem 3 If M 6≡ M′ then there exist aCT L formula f ,
such thatM |= f ∧M′ 6|= f .

Thus, in fact, by preserving CT L one also preserves all of
CT L∗.

If one considers the logic CTL∗-X , there also exists

an equivalence characterizing it, usually called stuttering

bisimulation. This equivalence is used by partial order re-

ductions preserving all of CTL∗-X .
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Simulation

A much more useful notion to be used in context of
abstraction is that of a simulation.

Definition 4 Let M = (S,s0
,R,L) and

M′ = (S′,s0′
,R′

,L′) be Kripke structures withAP ⊆ AP′.
A relationH ⊆ S×S′ is asimulation relation iff for all
s ∈ S,s′ ∈ S′, if H(s,s′) then the following hold:

L(s)∩AP′ = L′(s′)

For everys1 ∈ S such thatR(s,s1) there iss1
′ ∈ S′

such thatR′(s′,s1
′) andH(s1,s1

′)
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We say that M′ simulates M (denoted by M � M′), if

there exists a simulation relation H, such that H(s0
,s0′).

It is easy to show that � is a preorder (reflexive and
transitive relation).
The logic ACT L∗ consist of those formulas of CT L∗,
which in negation normal form do not contain the
existential E path quantifier. Most notably all LT L
formulas are also ACT L∗ formulas (once you add the
implicit A in front of an LT L formula).
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ACT L∗ is Preserved by Simulation

We have the following result.

Theorem 5 SupposeM � M′. Then for everyACT L∗

formula f with atomic propositions fromAP′ it holds
thatM′ |= f impliesM |= f .

Thus, if one comes up with an abstraction method, one
needs to prove that it preserves simulation, and after that
all universally quantified CT L∗ formulas can be checked
on the reduced structure M′.
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Now any abstraction method, for which it can be proved
that the Kripke structure M′ of the abstracted system
simulates the Kripke structure M of the original system is
sound for the logics: ACT L∗, LT L, and safety subset(s)
of LT L.
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Abstraction and Deadlocks

One should, however, be careful when deadlocks are
present in the original system.

The “easiest” way is to remove deadlocks by adding a tran-

sition “dummy”, which is enabled iff none of the transitions

of the original system is, and which does not change the

state of the system when it fires.
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Abstraction and Deadlocks cnt.

When doing abstraction, also the “dummy” transition is
abstracted, and therefore in the abstracted system the
abstract version of “dummy”, call it “dummy′” will always
be enabled in states corresponding to deadlocks. Doing
so will enable abstraction to be used for also deadlock
checking and veriying liveness properties.

The second option is to prove that the original system is
deadlock free (e.g., by construction).

The third option is to only verify safety properties after ab-

straction. (In particular, deadlocks are not safety.)
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