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Safety

Safety properties are a very useful subclass of
specifications. Basically safety properties are those
properties, where a violation of the property can
always be detected after only a finite execution of the
system.

Violations of safety properties can also be detected
with traditional testing and simulation methods.

Violations of safety properties can also often be
monitored during implementation runtime. This is
often called “runtime” verification.
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Bad Prefixes

Let’s now formalize this notion of safety. Consider a
language L consisting a set of of infinite words over
alphabet Σ, i.e., L ⊆ Σω.

A finite word x ∈ Σ∗ is a bad prefix for L iff for all
infinite words y ∈ Σω it holds that the concatenation
x · y is not in L. In other words, no matter how x is
extended, we will always get words not in L.

You can think of the bad prefix x as a finite
counterexample showing that the safety property is
violated.
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Safety Languages

A language L ⊆ Σω is a safety language (also called
a safety property) iff every infinite word not in L has a
finite bad prefix.

I.e., L is a safety language iff ∀w ∈ Σω \L there is
x ∈ Σ∗ such that: (i) w = x · z for some z ∈ Σω, and (ii)
for all y ∈ Σω it holds that x · y 6∈ L.
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Safety and LTL

There is a subset of LTL properties, which is called
“syntactic LTL safety formulas”. Basically this subset
contains all the formulas built using the following
syntax:

Given the set AP, an syntactic safety LTL formula is:
true, false, p for p ∈ AP, or ¬p for p ∈ AP,
f1∨ f2, f1∧ f2, X f1, 2 f1, or f1R f2, where f1
and f2 are syntactic safety LTL formulas

Note that negation can only be applied to atomic
propositions, thus until properties can not be
expressed in the subset.
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Automata for Syntactic LTL Safety
Formulas

Theorem 1 Given a syntactic safetyLTL formula f ,
there is a nondeterministic finite automatonA¬ f (on

finite words), which has at most 2O (| f |) states, accepts
only bad prefixes forL ( f ), and for each word
w ∈ L (¬ f ), the automaton accepts some finite wordx,
such thatw = x · z for some infinite wordz.

The procedure to obtain that automaton is similar in spirit

to LTL to Büchi conversion, but the details differ! (Take a

look at the “scheck” tool by T. Latvala.)
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Automata for General LTL Safety

Note that there are a lot of other LTL formulas which are
safety but are nor syntactically safety: 32p ∧ 32¬p.

Theorem 2 Given any safetyLTL formula f there is a
deterministic finite automatonA¬ f (on finite words),

which has at most 22
O (| f |)

states, accepts only bad prefixes
for L ( f ), and for each wordw ∈ L (¬ f ), the automaton
accepts the shortest finite wordx, such thatw = x · z for
some infinite wordz.

There is also a 22Ω(
√

| f |)
lower bound ⇒ use Büchi

automata instead!

– 7/19



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Liveness

There are several different definitions of liveness in
the literature.

For our purposes the following definition is sufficient:

A language L ⊆ Σω is a liveness language (also
called a liveness property) iff L is not a safety
language.

To detect violations of liveness properties thus need
to consider (at least some) infinite executions of the
system.
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Fairness

Sometimes we want to use fairness assumptions on
the environment out system works in.

For example, we might want to assume that a
scheduler never ignores some process forever. It
could be that a system can only guarantee progress
if such a scheduler is present. However, optimally we
would like our program to work even if the scheduler
is very unfair. To model “the worst possible
scheduler”, we might add fairness conditions
implying that each process is scheduled infinitely
often.
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Fairness cnt.

Another example of fairness assumptions is that of a
lossy message channel, which will for each message
“mi” guarantee the following: If message “mi” is sent
infinitely often, then the same message “mi” is also
received infinitely often.

Note that fairness assumptions are only needed to
prove liveness properties! Any safety property can
be verified without assuming fairness.
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Model Checking Under Fairness

In model checking under fairness, some fairness
assumption is assumed from a system, such as that
the used scheduler will schedule all processes
infinitely often. This can often be captured by an LTL
formula of the form:

(fairness) → (property).

One should be careful when specifying the formula
for fairness, because it is easy to make a mistake
and to specify a fairness assumption, which is
equivalent to false.
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Two very commonly used forms of fairness are weak
fairness and strong fairness.
Weak fairness can be captured by using the LTL formula

^

1≤i≤k

(32pi → 23qi),
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The formula on the previous slide is in fact equivalent
to:

^

1≤i≤k

(23(¬pi ∨qi)).

This formula can be translated into a one state
(generalized) Büchi automaton, provided that the
automaton class used has acceptance sets on arcs
instead being on the states (as in the standard
definition used in this course).
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Most LTL to Büchi translators will (unfortunately)
generate an exponential Büchi automaton when
confronted with a weak fairness formula.

Thus it is advisable to see whether the LTL model
checker you use handles weak fairness constraints in
an efficient manner. Sometimes using an a better
LTL to Büchi conversion tool can significantly
improve the performance of model checking LTL
under weak fairness.
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The strong fairness is characterized by the LTL
formula

^

1≤i≤k

(23pi → 23qi).

Unfortunately, this cannot be translated into a one
state Büchi automaton, and the exponential blowup
is unavoidable.

It can, however, be translated into one state
automaton of a class called a Streett automaton
(again provided that the acceptance conditions are
on edges).
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The acceptance component of a (state acceptance
set based) Streett automaton is
Ω = {(L1,U1),(L2,U2), . . . ,(Lk,Uk)}.

A run r of the Streett automaton A is accepting iff

k̂

i=1

(inf (r) ∩ Li = /0 ∨ inf (r) ∩ Ui 6= /0).
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It is easy to see that the acceptance component is
basically a strong fairness formula.

Generalized Büchi automata can be emulated by
Streett automata by setting Li = S, and Ui = Fi for all
i. However, the other direction involves an
exponential blowup.
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Upgrading your LTL to Büchi translator to a decent
one might help some when dealing with model
checking under strong fairness, but the resulting
Büchi automata will always be exponential in the
number of fairness constraints.

The emptiness checking algorithms for Streett
automata are more complex than those of Büchi
automata. They are, however, still polynomial. A
straightforward algorithm exists with a running time
of:
(O ((|S|+ |∆|+ |Ω|)min(|S|,k)), where |Ω| is sum of
the cardinalities of the sets Li and Ui).
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Thus if you need to model check under many strong
fairness constraints, using a model checker
employing Streett automata is advisable.

Use e.g., the Petri net model checker of the Maria
tool, due to T. Latvala and K. Heljanko.

Also other methods than Streett automata to solve
this problem exist.
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