
AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

T-79.186 Reactive Systems
Büchi Automata and LTL

Spring 2005, Lecture 7

Keijo Heljanko
Keijo.Heljanko@tkk.fi

– 1/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Example: X p1 as Büchi Automaton

It is easy to see that the Büchi automaton A1 below will
accept exactly the set of infinite words, which are models
of the LTL formula X p1.

s2

/0,{p1}

s0 s1

Σ = { /0,{p1}}

A1

/0,{p1} {p1}

– 2/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Example: p1 R p2 as BA

It is easy to see that the Büchi automaton A1 below will
accept exactly the set of infinite words, which are models
of the LTL formula p1 R p2.

A1 s1s0

/0,{p1},{p2},{p1, p2}

{p2}

Σ = { /0,{p1},{p2},{p1, p2}}

{p1, p2}

– 3/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Example: p1U p2 as BA

It is easy to see that the Büchi automaton A1 below will
accept exactly the set of infinite words, which are models
of the LTL formula p1U p2.

A1 s1s0

/0,{p1},{p2},{p1, p2}
{p2},{p1, p2}

{p1}

Σ = { /0,{p1},{p2},{p1, p2}}

– 4/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Example: (23p1)∧ (23p2) as BA

It is easy to see that the Büchi automaton A1 below will
accept exactly the set of infinite words, which are models
of the LTL formula (23p1)∧ (23p2).

A1

Σ = { /0,{p1},{p2},{p1, p2}}

/0,{p1},{p2},{p1, p2}

{p2},{p1, p2}{p1},{p1, p2}

/0,{p2} /0,{p1}

– 5/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Example: (23p1) ⇒ (23p2) as BA

It is easy to see that the Büchi automaton A1 below will
accept exactly the set of infinite words, which are models
of the LTL formula (23p1) ⇒ (23p2).

A1

Σ = { /0,{p1},{p2},{p1, p2}}

/0,{p2}

/0,{p2}

/0,{p1},{p2},{p1, p2}

/0,{p1},{p2},{p1, p2} /0,{p1},{p2},{p1, p2}

{p2},{p1, p2}

{p2},{p1, p2}
/0,{p1},{p2},{p1, p2}

/0,{p1},{p2},{p1, p2}

{p2},{p1, p2}/0,{p2}

– 6/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Translating LTL into Büchi Automata

There are several algorithms for translating LT L formulas
into Büchi automata. In this course we will go through a
variant due to Gerth, Peled, Vardi, and Wolper.
Given an LT L formula f , it will generate a Büchi
automaton A f of with at most 2O(| f |) states.
The automaton A f will accept the language
{w ∈ Σω | w |= f}, where Σ = 2AP.

– 7/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Recall that if we want to model check an LT L
property h, we should actually create an automaton
for f = ¬h.

First the formula f is transformed into negation
normal form (also called positive normal form),
where all negations appear appear only in front of
atomic propositions.

This can be done with previously presented
DeMorgan rules for temporal logic operators without
a blow-up.

– 8/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

We will now define the set of formulas sub(f) to be the
smallest set of LT L formulas satisfying:

Boolean constants true, false, and the top-level
formula f belong to sub(f),

if f1 ∨ f2 ∈ sub(f), then { f1, f2} ⊆ sub(f)

if f1 ∧ f2 ∈ sub(f), then { f1, f2} ⊆ sub(f)

if X f1 ∈ sub(f), then { f1} ⊆ sub(f)

if f1U f2 ∈ sub(f), then { f1, f2} ⊆ sub(f)

if f1 R f2 ∈ sub(f), then { f1, f2} ⊆ sub(f)

– 9/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

It is easy to show that |sub(f)| = O(| f |).
To ease implementation, the formulas of sub(f) can be

numbered, and thus any subset of sub(f) can be repre-

sented with a bit-array of length |sub(f)|. In fact, there are

at most 2O(| f |) such subsets.

– 10/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Proof Rules

The basic idea of the translation is based on the following
properties of the semantics of LT L:

To prove that w |= f1 ∨ f2 it suffices to either prove
that
a) w |= f1, or
b) w |= f2.

To prove that w |= f1U f2 it suffices to either prove
that
a) w |= f2, or
b) w |= f1 and w |= X(f1U f2).

– 11/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

To prove that w |= f1 R f2 it suffices to either prove
that
a) w |= f1 and w |= f2 , or
b) w |= f2 and w |= X(f1 R f2).

The only restriction being, that when proving f1U f2 the

case b) can only be used infinitely often iff the case a) is

also used infinitely often (we will use Büchi acceptance

sets to handle that).

– 12/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

The algorithm will manipulate a data structure called
node during its run.

A node is a structure with the following fields:

ID: A unique identifier of a node (a number),

Incoming: A list of node IDs,

Old ⊆ sub(f),

New ⊆ sub(f), and

Next ⊆ sub(f).

– 13/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

The nodes will form a graph, where the arcs of the
graph are stored in the Incoming list of the end node
of the arc for easier manipulation.

The initial node is marked by having a special node
ID called init in its Incoming list.

All nodes are stored in a set (use e.g., a hash table
for implementation) called nodes.

– 14/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

To implement the algorithm, the following functions are
defined.

Neg(true) = false,

Neg(false) = true,

Neg(p) = ¬p for p ∈ AP, and

Neg(¬p) = p for p ∈ AP.

– 15/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

The functions New1(f), Next1(f), and New2(f) are
tabulated below. They match the recursive definitions for
disjunction, until, release, and next-time:

f New1(f) Next1(f) New2(f)
f1 ∨ f2 { f2} /0 { f1}

f1U f2 { f1} { f1U f2} { f2}

f1 R f2 { f2} { f1 R f2} { f1, f2}

X f1 /0 { f1} /0

– 16/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

We are now ready to present the translation algorithm.

The top-level algorithm just does some initialization, and

then calls “expand(node)”.

– 17/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Algorithm 1 The top-level LT L to Büchi translation algorithm

global nodes: Set of Node; // Use e.g., a hash table
procedure translate(f: Formula)

local node: Node;
nodes := /0; // Initialize the result to empty set
node := NewNode(); // Allocate memory for a new node
node.ID := GetID(); // Allocate a new node ID
node.Incoming := {init}; // Incoming can be implemented as a list
node.New = { f}; // Use e.g., bit-arrays of size sub(f) for these sets
node.Old = /0; node.Next = /0;
expand(node); // Call the recursive expand procedure
return nodes;

end procedure

– 18/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Algorithm 2 LT L to Büchi translation main loop

procedure expand(node: Node)
local node, node1, node2: Node; f: Formula;
if node.New = /0 then

if ∃ node1 ∈ nodes with node1.Old = node.Old ∧ node1.Next = node.Next then
node1.Incoming := node1.Incoming ∪ node.Incoming; // redirect arcs
return; // Discard “node” by not storing it to “nodes”

else
nodes := nodes ∪{ node }; // “node” is ready, add it to the automaton
node2 := NewNode(); // Create “node2” to prove formulas in “node.Next”
node2.ID := GetID(); node2.Incoming := { node.ID };
node2.New = { node.Next }; node2.Old = /0; node2.Next = /0;
expand(node2);
return;

– 19/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

else // node.New 6= /0 holds
pick f from node.New; // Any formula “f” in “node.New” will do
node.New := node.New \ { f }; // Remove “f” from proof objectives
switch begin(FormulaType(f))

case atomic proposition, negated atomic proposition, true, false:
expand_simple(node,f); break;

case conjunction: expand_conjunction(node,f); break;
case disjunction, until, release: expand_disjunction(node,f); break;
case next: expand_next(node,f); break;

switch end
return;

end procedure

– 20/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Algorithm 3 Expanding simple formulas

procedure expand_simple(node: Node, f: Formula)
if f = false or Neg(f) ∈ node.Old then

return; // “node” contains (false or both p and ¬p)
else

node.Old := node.Old ∪ { f }; // Recall that this node proves “f”
expand(node); // Handle the rest of the formulas in “node.New”

return;
end procedure

– 21/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Algorithm 4 Expanding conjunction

procedure expand_conjunction(node: Node, f: Formula)
local f1, f2: Formula;
f1 := left(f); // Obtain subformula “f1” from left side of f1 ∧ f2

f2 := right(f); // Obtain subformula “f2” from right side of f1 ∧ f2

node.New := node.New ∪ ({ f1, f2 } \ node.Old); // Prove both
node.Old := node.Old ∪ { f }; // Recall that this node proves “f”
expand(node); // Handle the rest of the formulas in “node.New”
return;

end procedure

– 22/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Algorithm 5 Expanding disjunction

procedure expand_disjunction(node: Node, f: Formula)
local f1, f2: Formula;
local node1, node2: node;
// This one handles all the cases: f1 ∨ f2, f1U f2, f1 R f2

// Replace “node” with two nodes “node1” and “node2” (Blow-up is here!)

// Do the proof using strategy (b)
node1 := NewNode(); // Create “node1” to prove formulas using strategy (b)
node1.ID := GetID();
node1.Incoming := node.Incoming;
node1.New = node.New ∪ (New1(f)\ node.Old); // Prove things in New1(f)
node1.Old := node.Old ∪ { f }; // Recall that “node1” node proves “f”
node1.Next = node.Next ∪ Next1(f); // On the next time, prove things in Next1(f)

– 23/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

// Do the proof using strategy (a)
node2 := NewNode(); // Create “node2” to prove formulas using strategy (a)
node2.ID := GetID();
node2.Incoming := node.Incoming;
node2.New = node.New ∪ (New2(f)\ node.Old); // Prove things in New2(f)
node2.Old := node.Old ∪ { f }; // Recall that “node2” node proves “f”
node2.Next = node.Next; // In case (a) Next2(f) is always empty

expand(node1); // “node1” does the proof using strategy (b)
expand(node2); // “node2” does the proof using strategy (a)
return; // discard “node” by not storing it to “nodes”

end procedure

– 24/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Algorithm 6 Expanding next

procedure expand_next(node: Node, f: Formula)
local f1: Formula;
f1 := left(f); // Obtain subformula “f1” from X f1

// This one handles the case X f1

node.Old := node.Old ∪ { f }; // Recall that “node” node proves “f”
node.Next = node.Next ∪ Next1(f); // On the next time, prove things in Next1(f)

expand(node); // Handle the rest of the formulas in “node.New”
return;

end procedure

– 25/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

The algorithm creates a graph stored in the set
“nodes”. The nodes of this graph are labeled with
formulas. Actually, from now on we are only
interested in the formulas stored in the set “Old”.

It is now easy to obtain a Büchi automaton from this
graph. (Using a slightly different Büchi automata
definition than what has been used in this course so
far.)

First of all a special initial state “init” is created. This
state is the only state in S0.

All nodes “p ∈ nodes” together with the initial state
“init” are the states S of the Büchi automaton.

– 26/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

The labeling of the arcs of the Büchi automaton can be
derived from the formula labeling of states.
Namely, a state is compatible with a set of valuations as
described below.

A valuation v ∈ 2AP is compatible with the label of a node
s iff:

∀p ∈ AP: if p ∈ s.Old then p ∈ v, and

∀p ∈ AP: if ¬p ∈ s.Old then p 6∈ v.

– 27/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

There is an arc from a state s ∈ S to a state r ∈ S with a
label v ∈ 2AP iff

v is compatible with the valuation of r, and

s ∈ r.Incoming.

– 28/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

The Büchi automaton class used is called generalized
Büchi automata. In this class the acceptance component
consist of several acceptance sets. The basic idea is that
an accepting run should visit some accepting state from
each acceptance set infinitely often.
More formally the acceptance component is
F = {F1,F2, . . . ,Fn}, where each Fi ⊆ S.
Now a generalized Büchi automaton A accepts a run r iff
for all Fi ∈ F : inf (r)∩Fi 6= /0.

Note that in the special case F = /0 all the infinite runs of
the generalized Büchi automaton are accepting.

– 29/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

We will to rule out the use of case b) infinitely many times
without also using case a) infinitely many times when
proving the until formula f1U f2 ∈ sub(f). This is done by
using one acceptance set for each until formula.

– 30/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Assume, that all the until subformulas (subformulas of the
form g1U g2) are f1, f2, . . . , fn. Then the acceptance
component F = {F1,F2, . . . ,Fn}, where:
For each 1 ≤ i ≤ n the state s belongs to Fi iff

right(fi) ∈ s.Old, (g2 is proved) or

fi 6∈ s.Old (we do NOT need to prove fi = g1U g2).

These together will assure that for each until formula fi
either the right hand side is eventually proved, or that the
until formula fi is not our proof obligation in state s.

Note also that if there are no until formulas, F = /0.

– 31/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Many of the emptiness checking algorithms, for
example the nested depth first search, do not handle
generalized Büchi automata.

Thus most of the LTL to Büchi translation algorithms
make a (non-generalized) Büchi automaton A ′ out of
the generalized Büchi automaton with the following
procedure (which works for any generalized Büchi
automaton).

The construction uses the same “counter trick” as
the product construction of two Büchi automata.

– 32/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Definition 1 Let A be a generalized Büchi automaton
(Σ,S,S0

,∆,F), where
F = {F1,F2, . . . ,Fn}. We now define a (non-generalized)
Büchi automaton A ′ by case analysis on F :

if F = /0 then A ′ = (Σ,S,S0
,∆,S),

if F = {F1} then A ′ = (Σ,S,S0
,∆,F1),

– 33/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

otherwise: F = {F1,F2, . . . ,Fn}, where n ≥ 2:

A ′ = (Σ,S′,S0′
,∆′

,F1
′), where:

S′ = S×{1,2, . . . ,n},

S0′ = S0 ×{1},
∆′ is defined as follows: ((s, i),a,(s′, j)) ∈ ∆′ iff
(s,a,s′) ∈ ∆ and
((s 6∈ Fi and j = i) ∨ (s ∈ Fi and j = (i%n)+1)),
and
F1

′ = F1 ×{1}.

– 34/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Now it holds that L(A ′) = L(A), and A ′ is never smaller

than A . In fact, in the worst case A ′ has n times as

many states as A , where n in the number of acceptance

sets. This construction is essentially optimal (result due to

H. Tauriainen).

– 35/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Given an LT L formula f in negation normal form, for the
generalized Büchi automaton A f a (coarse) upper bound

on the number of states it has is 1+2(2·|sub(f)|) states.
(There is the state “init”, plus at most as many different
states as there are possible combinations of “Old” and
“Next” sets, of which there are at most 2(2·|sub(f)|).)

Theorem 2 Given an LT L formula f in negation normal
form, the generalized Büchi automaton A f has at most
2O(| f |) states.

– 36/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Converting the generalized Büchi automaton to a
non-generalized one we get (a coarse) upper bound of
|sub(f)| · (1+2(2·|sub(f)|)) states. We thus get also the
following result.

Theorem 3 Given an LT L formula f in negation normal
form, the (non-generalized) Büchi automaton A f has at
most 2O(| f |) states.

– 37/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

There are quite a few highly optimized freely available
LTL to Büchi automata translators available. Rolling your
own can be educational, but not likely very effective.
The exponential blow-up in the construction is
unavoidable when translating into Büchi automata.
(Recall that it is easy to express a binary counter with n
bits with an LTL formula of size O(n).)

– 38/39

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Another example of unavoidable blow-up is the LTL
formula

(strong_fairness) → (property)

will exhibit this behavior, where

strong_fairness =
∧

1≤i≤n

(23pi → 23qi).

Such fairness assumptions often arise in model checking
of liveness properties.

– 39/39

	Example: X, p_1 as B{"u}chi Automaton
	Example: p_1 , R , p_2 as BA
	Example: p_1 , U , p_2 as BA
	Example: $(Box Diamond p_1)
wedge (Box Diamond p_2)$ as BA
	Example: $(Box Diamond p_1)
Rightarrow (Box Diamond p_2)$ as BA
	Translating LTL into B{"u}chi Automata
	
	
	
	Proof Rules
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

