
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T-79.186 Reactive Systems
Automata on Infinite words

Spring 2005, Lecture 6

Keijo Heljanko
Keijo.Heljanko@tkk.fi

– 1/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Automata on Infinite Words

To handle model checking of linear time temporal
logic LTL it is natural to use automata. However,
these automata will accept infinite words
(strings/sequences) instead of finite words.

These automata are very closely related to finite
state automata (on finite words). Note, however, that
several of the used definitions for them are subtly
different than for finite state automata.

The most widely used class of automata on infinite
strings is called Büchi automata.

– 2/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Büchi Automata

The definition of Büchi automata is identical to the
definition of a finite state automata.

Definition 1 A (nondeterministic) Büchi automatonA is
a tuple(Σ,S,S0,∆,F), where

Σ is a finitealphabet,

S is a finite set ofstates,

S0 ⊆ S is set ofinitial states,

∆ ⊆ S×Σ×S is thetransition relation, and

F ⊆ S is the set ofaccepting states.

– 3/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The meaning of the transition relation ∆ ⊆ S×Σ×S is the
following: (s,a,s′) ∈ ∆ means that there is a move from
state s to state s′ with symbol a.

The definition of the language accepted by the automaton

differs from FSAs.

– 4/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Language of Büchi Automaton

A Büchi automaton A accepts a set of infinite words
L (A) ⊆ Σω called the language accepted by A , defined
as follows:

A run r of A on an infinite word a0,a1, . . . ∈ Σω is an
infinite sequence s0,s1, . . . of states in S, such that
s0 ∈ S0, and (si,ai,si+1) ∈ ∆ for all i ≥ 0.

Let inf (r) denote the set of states appearing
infinitely often in the run r . The run r is accepting iff
inf (r)∩F 6= /0. A word w∈ Σω is accepted by A iff
A has an accepting run on w.

– 5/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The language of L (A) ⊆ Σω is the set of infinite words
accepted by the Büchi automaton A .

A language of automaton A is said to be empty when

L (A) = /0.

– 6/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Checking Emptiness

It is easy to check whether L (A) 6= /0 by using the
following observation: The language of the Büchi
automaton is non-empty iff from some initial state
s∈ S0 an accepting state s′ can be reached, such
that s′ can reach itself by a non-empty sequence of
transitions.
(I.e., there should be a path from s′ back to itself in ∆
which contains at least one edge.)

The check above can be easily made by a linear time
algorithm. (We’ll come back to that later.)

– 7/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Operations for Büchi Automata

We will now start defining the Boolean operators on
Büchi automata:
A = A1∪A2 and A = A1∩A2.

We will not be able to show A = A ′ in this course
due to its technical complexity, but it can also be
done. Thus also Büchi automata are closed under
the Boolean operations.

– 8/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The ∪ for Büchi automata is identical with the FSAs.

Definition 2 Let A1 = (Σ,S1,S0
1,∆1,F1) and

A2 = (Σ,S2,S0
2,∆2,F2) be two Büchi automata.

We define theunionBüchi automaton to be
A = (Σ,S,S0,∆,F), where:

S= S1 ∪ S2,

S0 = S0
1 ∪ S0

2,

∆ = ∆1 ∪ ∆2, and

F = F1 ∪ F2.

– 9/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Now for the union Büchi automaton A (also denoted by

A1 ∪ A2) it holds that L (A) = L (A1) ∪ L (A2).

– 10/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Operations on BAs

Consider the following Büchi automata A1 and A2, both
over the alphabet Σ = {a,b}.

b

a,bs0
A1 s1

b

A2

a

b

b

b
t0

t2

t1

a

b

– 11/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Union of Büchi Automata

The following Büchi automaton A is their union, in other
words A = A1 ∪ A2.

a

b

b

b
t0

t2

a

b

t1

b

a,bs0 s1

b

Σ = {a,b}

A

– 12/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Intersection of Büchi Automata

The ∩ definition for Büchi automaton differs from the FSA
version!

If you use either FSA or Büchi definition in the wrong con-

text, you will get incorrect results!

– 13/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Product of Büchi Automata

Definition 3 Let A1 = (Σ,S1,S0
1,∆1,F1) and

A2 = (Σ,S2,S0
2,∆2,F2) be Büchi automata.

We define theproductBüchi automaton to be
A = (Σ,S,S0,∆,F), where:

S= S1×S2×{1,2},

S0 = S0
1×S0

2×{1},

F = F1×S2×{1}, and

– 14/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Product of Büchi Automata cont.

for all s,s′ ∈ S1, t, t ′ ∈ S2,a∈ Σ, i, j ∈ {1,2}:
((s, t, i),a,(s′, t ′, j)) ∈ ∆ iff (s,a,s′) ∈ ∆1,
(t,a, t ′) ∈ ∆2, and:
a) (i = 1, s∈ F1, and j = 2), or
b) (i = 2, t ∈ F2, and j = 1), or
c) (neither a) or b) above applies and j = i).

Now for the product Büchi automaton A (also denoted by
A1∩A2 or A1×A2) it holds that L (A) = L (A1)∩L (A2).

– 15/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Intersection of FSAs

Recall from previous lectures how the FSA are
intersected. (Note: This is NOT the way to deal with
Büchi automata!) The following FSA automaton A is the
intersection of A1 and A2, when they are seen as FSAs.

b

b

b

(s0, t2) (s1, t2)

(s1, t1)(s0, t1)

b

b

b

b

a

A

b
(s0, t0)

a

b

b

– 16/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Intersection of BAs

The following Büchi automaton A is the intersection
A = A1 ∩ A2.

(s0, t1,1)
A

(s0, t0,1)

(s1, t2,2)

(s1, t1,2)

(s1, t1,1) (s0, t1,2)

(s0, t2,1)

(s1, t2,1)

b

a

b b

b
b b

b

b

b b

b

bb

a

b

b

b
b

b

b

a

(s0, t2,2)

– 17/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From Kripke Structure to Büchi

Actually, we were careful to define the mapping from

Kripke structures to finite state automata in such a way

that it will work also without modifications with Büchi auto-

mata.

– 18/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From Kripke Structure to Büchi cnt.

Let M = (S,s0,R,L) be a Kripke structure over a set of
atomic propositions AP. Define a Büchi automaton
AM = (Σ,SM,S0

M,∆M,FM), where

Σ = 2AP,

SM = S∪ {si},

S0
M = {si},

For all s,s′ ∈ SM,a∈ Σ : (s,a,s′) ∈ ∆M iff
L(s′) = a and (((s,s′) ∈ R) or (s= si and s′ = s0));

and FM = SM.

– 19/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The Büchi automaton AM accepts exactly those
infinite sequences of labellings which correspond to
infinite paths of the Kripke structure starting from
some initial state.

We will later show how given an LTL formula f , we
can create a Büchi automaton A f which accepts
exactly all the infinite sequences of valuations which
satisfy f .

In model checking we actually negate the property f
first, and then create a Büchi automaton A¬ f . This
automaton accepts all violations of the property f .

– 20/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

If we have been given A¬ f , it holds that M |= f iff
L (AM ×A¬ f) = /0.

In other words: if no path of the Kripke structure is a
model of the complement of the specification, then
all paths of the Kripke structure are models of the
specification.

– 21/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Kripke Product

We’ll now show a small trick, using which AM ×A¬ f
can be replaced by a slightly smaller automaton,
which we call a Kripke product, and denote by
AM ⊗A¬ f .

In the special case F1 = S1 we can actually use a
simpler product construction, we denote it by
A1⊗A2:

Let A1 = (Σ,S1,S0
1,∆1,F1),A2 = (Σ,S2,S0

2,∆2,F2) be
two Büchi automata, such that for automaton A1 it
holds that F1 = S1. (Note that this is the case when
A1 is generated from a Kripke structure.)

– 22/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Definition 4 We define theKripke productautomaton to
beA = (Σ,S,S0,∆,F), where:

S= S1×S2,

S0 = S0
1×S0

2,

for all s,s′ ∈ S1, t, t ′ ∈ S2,a∈ Σ:
((s, t),a,(s′, t ′)) ∈ ∆ iff (s,a,s′) ∈ ∆1 and
(t,a, t ′) ∈ ∆2; and

F = S1×F2.

– 23/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Now for the Kripke product Büchi automaton A (also
denoted by A1⊗A2) it holds that
L (A) = L (A1)∩L (A2). (Side note: The above
definition happens to be equivalent to the FSA
A = A1 ∩ A2 operation because S1 = F1!)

Now if A1 is a Kripke structure automaton AM, it
fulfills the property above, and thus this Kripke
product construction can be used instead. (It has half
as many states.)

– 24/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: LTL Model Checking

Assume we want to check whether M |= f , where
f = 2(req⇒ (3ack)) for the Kripke structure M below.
This can be solved by checking whether for the Kripke
product automaton P = AM ⊗A¬ f it holds that
L (P) = /0. If so, then M |= f , otherwise M 6|= f .

s0

s2s1

M

/0

{req}

{ack}

– 25/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Büchi Automaton AM

AM

{req}

{req}

si

{req}

{ack}

s0

/0

s2s1

– 26/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Büchi Automaton A¬ f

Now it is easy to see that ¬ f = 3(req∧ (2¬ack)).

t0 t1
/0,{req}

A¬ f
{req}

/0,{req},{ack},{req,ack}

– 27/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Büchi Automaton P

P

{ack}

(s0, t0)

/0 /0

{req}

(s1, t0)

(s0, t1)

{req} {req}{req}

{req}

(s2, t1)

(si, t0)

(s2, t0){req}

{req}

– 28/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Büchi Automaton P is Non-empty!

It is easy to see that the Büchi automaton P has
accepting runs. An example is the run
r = (si, t0),(s0, t1),(s2, t1),(s0, t1),(s2, t1),

Now inf (r) = {(s0, t1),(s2, t1)}, and thus the run r is
accepting.

– 29/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The word accepted by r is:
w = {req}, /0,{req}, /0,{req}, /0,

The path π the run r corresponds to can be obtained
from r by projecting r on the first component, and
dropping the special state si from the beginning, i.e.,
π = s0,s2,s0,s2,

We also get that π |= ¬ f , and finally that M 6|= f .

– 30/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Emptiness Checking for BA

The following “nested depth-first search” algorithm
can be used to check a Büchi automaton for
emptiness.

It uses a hash table to check whether a state s has
already been visited by the algorithm. A new state
can be stored into this table using subroutine
“hash(s)”.

For efficiency each hash table entry contains (only)
two bits of additional information, both initialized to
zero value.

– 31/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Emptiness Checking for BA cnt.

To manipulate these bits, there are the following
subroutines. The subroutine “addstack1(s)” turns the
first bit to one, the subroutine “removestack1(s)”
clears the first bit, and the subroutine “instack1(s)”
returns “True” iff the first bit is set.

The subroutine “flag(s)” turns the second bit to one,
and the subroutine “flagged(s)” returns “True” iff the
second bit is set.

– 32/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Algorithm 1 The top-level nested DFS algorithm
procedureemptiness

for all s∈ S0 do
dfs1(s);

terminate(False); // Automaton is empty
end procedure

– 33/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Algorithm 2 The dfs1 subroutine
proceduredfs1(s)

local states′;
hash(s);
addstack1(s);
// ((s,a,s′) ∈ ∆ for somea∈ Σ)
for all successorss′ of sdo

if s′ is not in the hash tablethen dfs1(s′);
if s is an accepting statethen dfs2(s); // (s∈ F)
removestack1(s);

end procedure

– 34/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Algorithm 3 The dfs2 subroutine
proceduredfs2(s)

local states′;
flag(s);
// ((s,a,s′) ∈ ∆ for somea∈ Σ)
for all successorss′ of sdo

// Accepting run throughs′ found?
if instack1(s′) then terminate(True);
else ifnot flagged(s′) then dfs2(s′);
end if;

end procedure

– 35/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Actually DFS search order is needed for correctness
only in the subroutine “dfs1(s)”. (Using DFS there is
vital for correctness!)

The subroutine “dfs2(s)” can actually be implemented
using any search order (for example BFS).

The above emptiness checking algorithm “nested
depth first search” is what is implemented in the LTL
model checker SPIN.

– 36/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

MSCCs

We define a strongly connected component C of a
directed graph to be a set of nodes C⊆ S, in which
for all pairs of distinct states s,s′ ∈C it holds that: s′

can be reached from s and s can be reached from s′.

A strongly connected component C is called
maximal, if no strongly connected component C′ ⊆ S
exists, such that C⊂C′.

– 37/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

A maximal strongly connected component is called
non-trivial iff: (i) |C|> 1, or (ii) there exists s∈C such
that there is an edge in the graph from s back to s.

– 38/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Emptiness Checking with MSCCs

Another way of checking the non-emptiness of L (A)
is to compute the maximal strongly connected
components (MSCCs) of the Büchi automaton, and
check whether some non-trivial maximal strongly
connected component C reachable from some initial
state s∈ S0 contains an accepting state (C∩F 6= /0).
If so, the language is non-empty. Otherwise, the
language is empty.

– 39/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Also this emptiness checking approach can be
implemented with a linear time algorithm, e.g. by
using the Tarjan’s algorithm for computing the
MSCCs. (Compute the reachable MSCCs and check
whether any non-trivial MSCC contains an accepting
state.)

– 40/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deterministic Büchi Automata

The definition of determinism for Büchi automata is
identical to the FSA case.

Unlike finite state automata, Büchi automata are not
expressively complete when deterministic. In other
words, there are languages accepted by
non-deterministic Büchi automata, which no
deterministic Büchi automaton accepts. An example
of such a language is (a+b)∗bω. (A finite number of
a symbols with finitely many occurrences of b
symbols between any two a’s followed by an infinite
sequence of b symbols.)

– 41/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deterministic Büchi Automata cnt.

Also note that LTL requires non-deterministic
automata to be expressed, the language above is
effectively the same as the requirement expressed
by the LTL formula 32b.

– 42/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Complementing Büchi Automata

A complementation procedure for Büchi automata
exists, however, it is very different from finite state
automata, as the normal determinization construction
can not be used. In fact, we have the following result:

Theorem 5 Let A be any (non-deterministic) Büchi
automaton withn states. Then in the worst case the
smallest Büchi automatonA ′, such that
L (A ′) = Σω \L (A) will have Ω(n!) (= 2Ω(nlogn))
states.

– 43/44

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Complementing Büchi Automata cnt.

This blow-up is in practice much worse than the
blow-up for finite state automata complementation.
(For example, while 5! = 120and 25 = 32, factorial
grows much faster: 10! = 3628800, while
210 = 1024.)

There are several different ways to complement
Büchi automata matching the lower bound.
Thankfully in (basic) model checking
complementation of Büchi automata is not needed.

– 44/44

	Automata on Infinite Words
	B{"u}chi Automata
	
	Language of B{"u}chi Automaton
	
	Checking Emptiness
	Operations for B{"u}chi Automata
	
	
	Example: Operations on BAs
	Example: Union of B{"u}chi Automata
	Intersection of B{"u}chi Automata
	Product of B{"u}chi Automata
	Product of B{"u}chi Automata cont.
	Example: Intersection of FSAs
	Example: Intersection of BAs
	From Kripke Structure to B{"u}chi
	From Kripke Structure to B{"u}chi cnt.
	
	
	Kripke Product
	
	
	Example: LTL Model Checking
	B{"u}chi Automaton $mathcal {A}_{M}$
	B{"u}chi Automaton $mathcal {A}_{
eg f}$
	B{"u}chi Automaton $mathcal {P}$
	B{"u}chi Automaton $mathcal {P}$ is Non-empty!
	
	Emptiness Checking for BA
	Emptiness Checking for BA cnt.
	
	
	
	
	MSCCs
	
	Emptiness Checking with MSCCs
	
	Deterministic B{"u}chi Automata
	Deterministic B{"u}chi Automata cnt.
	Complementing B{"u}chi Automata
	Complementing B{"u}chi Automata cnt.

