T-79.186 Reactive Systems

Automata on Infinite words
Spring 2005, Lecture 6

Keijo Heljanko
Keijo. Hel janko@Kkk. fi

é

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theore tical Computer Science —1/44

Automata on Infinite Words

m To handle model checking of linear time temporal
logic LT L it is natural to use automata. However,
these automata will accept infinite words
(strings/sequences) instead of finite words.

m These automata are very closely related to finite
state automata (on finite words). Note, however, that
several of the used definitions for them are subtly
different than for finite state automata.

m The most widely used class of automata on infinite
strings is called Blchi automata.

4

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science —2/44

Buchi Automata

The definition of Buchi automata is identical to the
definition of a finite state automata.

Definition 1 A (nondeterministic) Buchi automatenis
a tuple(=,S S, A F), where

m 2 IS a finitealphabet

m Sis a finite set oftates

m S C Sis set ofinitial states
m A C Sx 2 x Sis thetransition relation and
m F C Sis the set ofaccepting states

g

H] LSINKI UNIVERSITY OF TECHNOLOGY

y for The 1l Computer Sci —3/44

The meaning of the transition relation A C Sx 2 x Sis the
following: (s,a,8) € A means that there is a move from

state Sto state S with symbol a.
The definition of the language accepted by the automaton
differs from FSAs.

g

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science —4/44

Language of Blchi Automaton

A Blchi automaton 2 accepts a set of infinite words
£ (a) C 2% called the language accepted by 4 , defined
as follows:

m Arunr of 2 on an infinite word ag,a1,... € 2% is an
infinite sequence S, S1, . .. of states in S, such that

s € S, and (s,8,541) € Aforalli > 0.

m Let inf(r) denote the set of states appearing
infinitely often in the run r. The run r is accepting iff
inf(r)NF £ 0. Aword w € 2% is accepted by 4 iff
4 has an accepting run on W.

4

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —5/44

The language of £ (a2) C Z% is the set of infinite words
accepted by the Blchi automaton 4 .

A language of automaton 2 Is said to be empty when

r(a)=0.

é

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theore tical Computer Science —6/44

Checking Emptiness

m It is easy to check whether £ (4) # 0 by using the
following observation: The language of the Buchi
automaton is non-empty iff from some initial state

sc & an accepting state S’ can be reached, such

that S' can reach itself by a non-empty sequence of
transitions.

(I.e., there should be a path from S back to itself in A
which contains at least one edge.)

m The check above can be easily made by a linear time
algorithm. (We’ll come back to that later.)

4

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science —7/44

Operations for Blichi Automata

m We will now start defining the Boolean operators on
Blchi automata:

4 =441U4g2and 2 =a21M4ao.

m We will not be able to show 2 = 2/ in this course
due to its technical complexity, but it can also be
done. Thus also Biuchi automata are closed under
the Boolean operations.

g

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science —8/44

The U for Buchi automata is identical with the FSAs.

Definition 2 Leta; = (2,5,S),A1,F1) and

12=(2,%,9),A2,F) be two Blichi automata.

We define thainionBuchi automaton to be
a2 = (2,5, A F), where:

BES=5 U5,
ISO:U,
A=A UNy, and
sF=FUBP.

J

111 Ismm \1\1 RSITY OF TECHNOLOGY
il Computer Sci —9/44

Now for the union Buchi automaton 2 (also denoted by
41U ap)itholdsthat £ (2) =r (a1) U £ (a2).

é

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theore tical Computer Science —10/44

Example: Operations on BAS

Consider the following Buchi automata 41 and 4 2, both
over the alphabet > = {a, b}.

g

A1

s &b g
O Xy

b

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Scienc e

—11/44

Example: Union of Buchi Automata

The following Buchi automaton 4 is their union, in other

words 2 = a1 U a9o.

é

A

2 ={a,b}

a,b

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

—12/44

Intersection of Buchi Automata

The M definition for Buchi automaton differs from the FSA
version!

If you use either FSA or Blchi definition in the wrong con-

text, you will get incorrect results!

é

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theore tical Computer Science —13/44

Product of Buchi Automata

Definition 3 Leta; = (2,5, S},A1,F) and
12=(2,%,9, A, F,) be Blichi automata.
We define theroductBlchi automaton to be

a2 = (2,5, A F), where:
BS=5 xS x{1,2},
n S = $ X $ x {1},

mF=F xS x {1}, and

q.

I] LSINKI UNIVE RSI[E ()F TECHNOLOGY
y for The Computer Science —14/44

Product of Buchi Automata cont.

mforalls, s e S t,t' e Saci,je{l2}:
((st,i),a(s,t',])) € Aiff (s,a,9) € Ay,
(t,a,t’) € Ay, and:
a) I=1sek,and | =2),or
b) =2,tek,and | =1), or
c) (neither a) or b) above applies and | =1).

Now for the product Blchi automaton 2 (also denoted by
a1Nagora1xaz)itholdsthat £ (2)=r(a1)Nc(a2).

g

111 LSINKI UNIVERSITY OF TECHNOLOGY
y for The il Computer Sci —15/44

Example: Intersection of FSAs

Recall from previous lectures how the FSA are
Intersected. (Note: This is NOT the way to deal with
Blchi automata!) The following FSA automaton 4 is the
Intersection of 21 and 4 2, when they are seen as FSAs.

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Th cal Computer Scie —16/44

Example: Intersection of BAS

The following Buchi automaton 4 is the intersection
4 =411 4».

(Slvtl 2)

b b

O D 31 t1,1) (So,t1,2) .

b
O (s0:t0,1) b < b
(S))t27 1) A
Sl 2, 1) (s1,12,2)

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —17/44

7

From Kripke Structure to Blchi

Actually, we were careful to define the mapping from
Kripke structures to finite state automata in such a way

that it will work also without modifications with Buchi auto-
mata.

g

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

—18/44

From Kripke Structure to Buchi cnt.

Let M = (S L R L) be a Kripke structure over a set of
atomic propositions AP. Define a Blichi automaton

am = (Z,S\A,SRA,AM,FM), where

m> =2AP
Sy :SU{§},
=S ={s}

mForalls s € Sy,ae:(sa9) €Ay iff
L(s)=aand (((s,5) €R)or (=S and g =));
mand lHy = Sy.

q.

I] LSINKI UNIVE RSI[E ()F TECHNOLOGY
y for The Computer Science —19/44

m The Blchi automaton 4, accepts exactly those
Infinite sequences of labellings which correspond to
infinite paths of the Kripke structure starting from
some Initial state.

m We will later show how given an LT L formula f, we
can create a Blchi automaton 4 s which accepts
exactly all the infinite sequences of valuations which
satisfy f.

= I[n model checking we actually negate the property f
first, and then create a Blchi automaton 2 _+. This
automaton accepts all violations of the property f.

4

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —20/44

m If we have been given 2 _, it holds that M
r(amxa-i)=0.

— f iff

m In other words: if no path of the Kripke structure is a
model of the complement of the specification, then
all paths of the Kripke structure are models of the

specification.

g

HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

—21/44

Kripke Product

m We’'ll now show a small trick, using which apm X 2 -5

can be replaced by a slightly smaller automaton,
which we call a Kripke product, and denote by

AM KA f.

m In the special case F; = S we can actually use a
simpler product construction, we denote it by

41X 49

mletar=(%,5,9,01,F).a2=(2,%S,02,F) be
two Blchi automata, such that for automaton 41 it
holds that F; = 5. (Note that this is the case when
41 IS generated from a Kripke structure.)

4

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —22/44

Definition 4 We define th&ripke productautomaton to
bea = (2,5 ,A,F), where:

BES=5 XS5,
 P=9xS)

mforallss e S tt'eS,ac:
((s,t),a,(s,t") e Aiff (s,a,9) € A1 and
(t,a,t’) € Ay; and

mF =5 xb.

g

II] LSINKI UNIVERSITY OF TECHNOLOGY
y for The il Computer Sci —23/44

m Now for the Kripke product Bichi automaton 2 (also
denoted by 21 ® 4) it holds that
r(a)=c(a1)Nc(a2). (Side note: The above
definition happens to be equivalent to the FSA
4 = 41 N 42 operation because S = F1!)

m Now If 41 Is a Kripke structure automaton 4, It
fulfills the property above, and thus this Kripke
product construction can be used instead. (It has half
as many states.)

4

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —24/44

Example: LTL Model Checking

Assume we want to check whether M = f,

where

f = O(req= (<Cack)) for the Kripke structure M below.
This can be solved by checking whether for the Kripke
product automaton » = 4 ® 4 -5 it holds that

£ (2)

g

= 0. If so, then M

— f otherwise M

II] LSINKI UNIVERSITY OF TECHNOLOGY
y for The

11 Computer Sci

L £,

—25/44

Buchi Automaton 4

é

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —26/44

Buchi Automaton 4 ¢

Now it is easy to see that =f = &(reqA (O—ack)).

o fo {req} i
><(§ :@O,{req}

0, {req}, {ack}, {req, ack}

é

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theore tical Computer Science — 27144

Buchi Automaton o

é

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theore tical Computer Science —28/44

Blchi Automaton 2 Is Non-empty!

m |t IS easy to see that the Buchi automaton 2 has
accepting runs. An example is the run

= (SlatO)v (SO;tl)a (527t1)7 (507t1)7 (527t1)7 e

m Now inf (r) = {(So,11), (S2,t1) }, and thus the run r is
accepting.

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —29/44

m The word accepted by r is:
w = {req},0, {req},0, {req},0,....

m The path Ttthe run r corresponds to can be obtained
from r by projecting r on the first component, and

dropping the special state < from the beginning, i.e.,
M= 30,3,%0,;-- -

m We also get that T = —f, and finally that M = f.

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Th cal Computer Scie —30/44

Emptiness Checking for BA

m The following “nested depth-first search” algorithm
can be used to check a Buchi automaton for
emptiness.

m |t uses a hash table to check whether a state S has
already been visited by the algorithm. A new state
can be stored into this table using subroutine
*hash(9)”.

m For efficiency each hash table entry contains (only)
two bits of additional information, both initialized to
zero value.

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —31/44

Emptiness Checking for BA cnt.

m To manipulate these bits, there are the following
subroutines. The subroutine “addstack1(9)” turns the
first bit to one, the subroutine “removestackl1(s)”
clears the first bit, and the subroutine “instack1(S)”
returns “True” Iff the first bit is set.

m The subroutine “flag(s)” turns the second bit to one,
and the subroutine “flagged(S)” returns “True” iff the
second bit Is set.

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —32/44

Algorithm 1 The top-level nested DFS algorithm
procedure emptiness
for all se S’ do
dfs1(s),
terminate(False); // Automaton is empty
end procedure

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —33/44

Algorithm 2 The dfsl subroutine
procedure dfs1(s)
local states’;
hash§);
addstackl1s);
Il ((s,a,s) € Afor somea € %)
for all successors of sdo
if S'is not in the hash tabldnen dfs1(@);
if sis an accepting statben dfs2@©); // (s € F)
removestackH);
end procedure

q.

I]I SINKI U? I\IRIH()FII(IH\(I GY
y for The Computer Science —34/44

Algorithm 3 The dfs2 subroutine
procedure dfs2(s)
local states’;
flag(s);
Il ((s,a,s) € Afor somea € %)
for all successors of sdo
// Accepting run througls’' found?
if instack1§) then terminate(True);
else ifnot flagged§) then dfs2();
end If;
end procedure

q.

I]I SINKI U? I\IRIH()FII(IH\(I GY
y for The Computer Science —35/44

m Actually DFS search order is needed for correctness
only in the subroutine “dfs1(S)”. (Using DFS there is
vital for correctness!)

m The subroutine “dfs2(S)” can actually be implemented
using any search order (for example BFS).

m The above emptiness checking algorithm “nested
depth first search” is what is implemented in the LT L
model checker SPIN.

4

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —36/44

MSCCs

m We define a strongly connected component C of a
directed graph to be a set of nodes C C S in which

for all pairs of distinct states s,S € C it holds that: S
can be reached from sand s can be reached from 5.

m A strongly connected component C is called
maximal, if no strongly connected componentC' C S
exists, such that C c C'.

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —37/44

m A maximal strongly connected component is called
non-trivial iff: (i) |C| > 1, or (ii) there exists S € C such
that there is an edge In the graph from Sback to S.

é

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theore tical Computer Science —38/44

Emptiness Checking with MSCCs

m Another way of checking the non-emptiness of ~ (4)
IS to compute the maximal strongly connected
components (MSCCs) of the Blchi automaton, and
check whether some non-trivial maximal strongly
connected component C reachable from some initial

state s € S contains an accepting state (CNF # 0).
If so, the language is non-empty. Otherwise, the
language is empty.

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —39/44

m Also this emptiness checking approach can be
Implemented with a linear time algorithm, e.g. by
using the Tarjan’s algorithm for computing the
MSCCs. (Compute the reachable MSCCs and check
whether any non-trivial MSCC contains an accepting

state.)

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Th cal Computer Scie — 40/44

Deterministic Blichi Automata

m The definition of determinism for Blichi automata is
Identical to the FSA case.

m Unlike finite state automata, Blchi automata are not
expressively complete when deterministic. In other
words, there are languages accepted by
non-deterministic Blchi automata, which no
deterministic Blchi automaton accepts. An example
of such a language is (a+ b)*b®. (A finite number of
a symbols with finitely many occurrences of b
symbols between any two a’s followed by an infinite
sequence of b symbols.)

4

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —41/44

Deterministic Buchi Automata cnt.

m Also note that LT L requires non-deterministic
automata to be expressed, the language above is
effectively the same as the requirement expressed
by the LT L formula <ODb.

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —42/44

Complementing Blichi Automata

m A complementation procedure for Blichi automata
exists, however, it is very different from finite state
automata, as the normal determinization construction
can not be used. In fact, we have the following result:

Theorem 5 Let 2 be any (non-deterministic) Buchi
automaton witm states. Then in the worst case the
smallest Blichi automataon’, such that

£(a’) =329\ (a) will have Q(n!) (= 22(nlogn))
states.

4

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science —43/44

Complementing Buchi Automata cnt.

m This blow-up Is in practice much worse than the
blow-up for finite state automata complementation.

(For example, while 5! = 120and 2° = 32, factorial
grows much faster: 10! = 3628800 while

210 — 1024)

m There are several different ways to complement
Blchi automata matching the lower bound.
Thankfully in (basic) model checking
complementation of Blichi automata is not needed.

g

111 LSINKI UNIVERSITY OF TECHNOLOGY
y for The 1l Computer Sci —44/44

	Automata on Infinite Words
	B{"u}chi Automata
	
	Language of B{"u}chi Automaton
	
	Checking Emptiness
	Operations for B{"u}chi Automata
	
	
	Example: Operations on BAs
	Example: Union of B{"u}chi Automata
	Intersection of B{"u}chi Automata
	Product of B{"u}chi Automata
	Product of B{"u}chi Automata cont.
	Example: Intersection of FSAs
	Example: Intersection of BAs
	From Kripke Structure to B{"u}chi
	From Kripke Structure to B{"u}chi cnt.
	
	
	Kripke Product
	
	
	Example: LTL Model Checking
	B{"u}chi Automaton $mathcal {A}_{M}$
	B{"u}chi Automaton $mathcal {A}_{
eg f}$
	B{"u}chi Automaton $mathcal {P}$
	B{"u}chi Automaton $mathcal {P}$ is Non-empty!
	
	Emptiness Checking for BA
	Emptiness Checking for BA cnt.
	
	
	
	
	MSCCs
	
	Emptiness Checking with MSCCs
	
	Deterministic B{"u}chi Automata
	Deterministic B{"u}chi Automata cnt.
	Complementing B{"u}chi Automata
	Complementing B{"u}chi Automata cnt.

