T-79.186 Reactive Systems: Temporal Logic LTL, part II
Spring 2005, Lecture 5

Keijo Heljanko

January 31, 2005
The semantics in a Kripke structure can be (equivalently) defined as:

Definition 1 An LTL formula f holds in a Kripke structure M, denoted $M \models f$, iff for all paths π in M, such that $\pi_0 = s^0$, it holds that $\pi \models f$.

We also get the following:

Definition 2 An LTL formula does not hold f in a Kripke structure M, denoted $M \not\models f$, iff there is a path π in M, such that $\pi_0 = s^0$ and $\pi \models \neg f$.

This definition is easier to handle, as to prove that f does not hold, we have to find one path where $\neg f$ holds. If such a path cannot be found, then we can conclude that f holds.
Universal Quantification

Note: It is possible that both $M \not\models f$ and $M \not\models \neg f$ hold.

Consider the formula $\Box a$ in the Kripke structure M below. We get that $M \not\models \Box a$. However, $\neg \Box a = \Diamond \neg a$, and thus it is also the case that $M \not\models \neg \Box a$.
Example: Kripke Structure M of a Mutex System

Keijo Heljanko
Example: Properties of the Mutex System

- $M \models \Box \neg (CR0 \land CR1)$
 (both processes are never in their critical sections at the same time)

- $M \models \Box (TRY0 \Rightarrow \Diamond CR0)$
 (always when process 0 enters the trying section, it is eventually followed by process 0 entering the critical section)

- $M \models \Box (TRY0 \Rightarrow (TRY0 \cup CR0))$
 (always when process 0 enters the trying section, it stays in the trying section until it enters the critical section)
Example: Unsatisfied Properties of the Mutex System

- $M \not\models \Diamond CR0$

 (the following does **not** hold: process 0 will eventually enter the critical section)

- $M \not\models \Box \Diamond CR0 \Rightarrow \Box \Diamond CR1$

 (the following does **not** hold: if process 0 is infinitely often in the critical section, then also process 1 is infinitely often in the critical section)
Example: More Properties of the Mutex System

- $M \models \Box \Diamond CR0 \Rightarrow \Box \Diamond TRY0$
 (if process 0 is infinitely often in the critical section, then it is also infinitely often in the trying section)

- $M \models \Diamond \Box NC0 \Rightarrow \Diamond \Box \neg CR0$
 (if process 0 all the time from a certain point onward is in the non-critical section, then process 0 will all the time from a certain point onward be not in the critical section)

- $M \models (\Box \Diamond TRY0 \land \Box \Diamond TRY1) \Rightarrow (\Box \Diamond CR0 \land \Box \Diamond CR1)$
 (if both process 0 and 1 are infinitely often in the trying section, then both process 0 and 1 are infinitely often also in the critical section)
Quite often the requirements of a system follow some simple patterns. Sometimes we want to specify that a property should only hold in a certain context, called the scope of a property.

- **Global**: The scope of the property is the path.
- **Before** R: The scope of the property is all indexes which are strictly smaller than the first appearance of R.
- **After** Q: The scope of the property are all indexes greater or equal to the first appearance of Q.
LTL Property Patterns: Scope

- **Between** Q and R: The scope of the requirement contains all sequences of indexes, such that Q holds at the first index until (but not including) the larger index where R holds at the first time.

- **After** Q until R: The scope of the requirement contains all sequences of indexes, such that:
 1. Q holds at the first index until (but not including) the larger index where R holds at the first time, or
 2. Q holds at the first index but the R never holds at a larger index.

Note: Scopes are defined in a way that always includes the index at which the event triggering the scope happens, but excluding the index at which the event ending the scope happens.
LTL Property Patterns: Scope

- **Global**
 - Before R
 - After Q
 - Between Q and R
 - After Q until R

Keijo Heljanko
Absence pattern specifies that "P is false" should hold within the scope:

- **Global:** $\Box(\neg P)$
- **Before R:** $\Diamond R \Rightarrow (\neg P \lor R)$
- **After Q:** $\Box (Q \Rightarrow (\Box(\neg P)))$
- **Between Q and R:** $\Box((Q \land \neg R \land \Diamond R) \Rightarrow (\neg P \lor R))$
- **After Q until R:** $\Box((Q \land \neg R) \Rightarrow (\neg P \lor (R \lor \Box(\neg P))))$
LTL Property Patterns: Existence

Existence pattern specifies that “P becomes true” within the scope:

- **Global**: $\Diamond P$

- **Before** R: $\neg R \mathcal{U} ((P \land \neg R) \lor (\Box \neg R))$

- **After** Q: $(\Box (\neg Q)) \lor (\Diamond (Q \land (\Diamond P)))$

- **Between** Q and R: $\Box ((Q \land \neg R) \Rightarrow (\neg R \mathcal{U} ((P \land \neg R) \lor (\Box (\neg R))))))$

- **After** Q until R: $\Box ((Q \land \neg R) \Rightarrow (\neg R \mathcal{U} (P \land \neg R)))$
The LTL property patterns of the previous slides were included mainly to rehearse the semantics of LTL. However, they can be quite useful also in practice.

There are also other patterns available expressing:

- Universality: "P is true" - trivial to obtain from absence pattern
- Precedence: "S precedes P"
- Response: "S responds to P"
- Etc., etc.

These LTL property patterns can be obtained through the Web page:
http://www.cis.ksu.edu/santos/spec-patterns/
Relating Boolean and Temporal Operators

\[X(\varphi_1 \lor \varphi_2) \equiv X\varphi_1 \lor X\varphi_2 \]
\[X(\varphi_1 \land \varphi_2) \equiv X\varphi_1 \land X\varphi_2 \]
\[X\neg\varphi \equiv \neg X\varphi \]

\[\Diamond(\varphi_1 \lor \varphi_2) \equiv \Diamond\varphi_1 \lor \Diamond\varphi_2 \]
\[\neg\Diamond\varphi \equiv \Box \neg\varphi \]

\[\Box(\varphi_1 \land \varphi_2) \equiv \Box\varphi_1 \land \Box\varphi_2 \]
\[\neg\Box\varphi \equiv \Diamond \neg\varphi \]

\[(\varphi_1 \land \varphi_2) U \psi \equiv (\varphi_1 U \psi) \land (\varphi_2 U \psi) \]
\[\varphi U (\psi_1 \lor \psi_2) \equiv (\varphi U \psi_1) \lor (\varphi_1 U \psi_2) \]
Some Idempotence Laws

\[\Diamond \Diamond \varphi \equiv \Diamond \varphi \]
\[\Box \Box \varphi \equiv \Box \varphi \]
\[\Diamond \Box \Diamond \varphi \equiv \Box \Diamond \varphi \]
\[\Box \Diamond \Box \varphi \equiv \Diamond \Box \varphi \]
\[\varphi U (\varphi U \psi) \equiv \varphi U \psi \]
Unfolding Laws

\[\Diamond \varphi \equiv \varphi \lor X \Diamond \varphi \]

\[\square \varphi \equiv \varphi \land X \square \varphi \]

\[\varphi U \psi \equiv \psi \lor (\varphi \land X (\varphi U \psi)) \]

\[\varphi R \psi \equiv \psi \land (\varphi \lor X (\varphi R \psi)) \]