
Tik-79.186 Reactive Systems 1

'

&

$

%

T-79.186 Reactive Systems:

Temporal Logic LTL
Spring 2005, Lecture 4

Keijo Heljanko

January 31, 2005

Keijo Heljanko

Tik-79.186 Reactive Systems 2

'

&

$

%

Temporal Logics

Temporal logics are currently the most widely used specification formalism for reactive

systems. They were first suggested to be used for specifying properties of programs in

late 1970’s by A. Pnueli. Before that philosophers had used similar logics to reason

about the notions of knowledge and belief in natural language. In early 1980’s first

practical tools using temporal logics as the specification language appeared.

Keijo Heljanko

Tik-79.186 Reactive Systems 3

'

&

$

%

Why Use Temporal Logics?

Temporal logics proved to be popular for several reasons:

• specifications have close correspondence to the natural language

• well defined semantics

• modelling language independent

• algorithms and tools for them exist

• expressive enough

• are succinct enough (more succinct than automata)

• allow easy complementation without blow-up

Keijo Heljanko

Tik-79.186 Reactive Systems 4

'

&

$

%

Recall the definition of Kripke structures:

Definition 1 Let AP be a non-empty set of atomic propositions. A Kripke
structure is a four tuple M = (S, s0, R, L), where

• S is a finite set of states,

• s0 ∈ S is an initial state,

• R ⊆ S × S is a transition relation, for which it holds that
∀s ∈ S : ∃s′ ∈ S : (s, s′) ∈ R, and

• L : S → 2AP is labelling, a function which labels each state with the atomic
propositions which hold in that state.

Keijo Heljanko

Tik-79.186 Reactive Systems 5

'

&

$

%

Paths

In temporal logics we are interested in non-terminating (infinite) executions of the

system, whose behavior is described by the Kripke structure M . (Infinite executions are

needed to handle liveness.)

A path starting from a state s ∈ S is an infinite sequence of states π = s0, s1, s2, . . .,

such that s0 = s and (si, si+1) ∈ R holds for all i ≥ 0.

Keijo Heljanko

Tik-79.186 Reactive Systems 6

'

&

$

%

Temporal Logic LTL

We start by defining the syntax of LTL, the logic we will mostly use in this course.

The logic LTL is a linear temporal logic, meaning that the formulas are interpreted

over infinite sequences of states.

A minimal syntax for LTL formulas is the following. Given the set AP , an LTL

formula is:

• true, false, or p for p ∈ AP

• ¬f1, f1 ∨ f2, Xf1, or f1 U f2, where f1 and f2 are LTL formulas

The formula Xf1 is read “next-time f1”, and f1 U f2 is read “f1 until f2”.

Keijo Heljanko

Tik-79.186 Reactive Systems 7

'

&

$

%

Often a non-minimal version of the LTL syntax is used.

Given the set AP , an LTL formula is:

• true, false, or p for p ∈ AP .

• ¬f1, f1 ∨ f2, f1 ∧ f2, Xf1, f1 U f2, or f1 R f2, where f1 and f2 are LTL formulas.

The formula f1 R f2 is read “f1 releases f2”.

Keijo Heljanko

Tik-79.186 Reactive Systems 8

'

&

$

%

This syntax of the previous slide is redundant, because actually

f1 ∧ f2 = ¬(¬f1 ∨ ¬f2), f1 R f2 = ¬(¬f1 U ¬f2) and Xf1 = ¬(X(¬f1)) hold in all

temporal logics to be considered in this course.

The redundancy is used by some algorithms to push negations deeper into the formula

by using the temporal logic DeMorgan rules described above.

Keijo Heljanko

Tik-79.186 Reactive Systems 9

'

&

$

%

Additional Shorthand Notation for LTL

We also use standard propositional shorthands: f1 ⇒ f2 = (¬f1 ∨ f2),
f1 ⇔ f2 = ((f1 ∧ f2) ∨ (¬f1 ∧ ¬f2)), etc.

Some often used temporal logic shorthands are:

• Ff1 = trueU f1,

read “finally f1” (or “in the future f1”)

• Gf1 = ¬F¬f1 (or equivalently Gf1 = falseR f1),

read “globally f1” (or “always f1”).

Keijo Heljanko

Tik-79.186 Reactive Systems 10

'

&

$

%

Alternative Notation for LTL

Also also the following notation is used often with LTL: 2f1 = Gf1 (for “box f1”),

3f1 = Ff1 (for “diamond f1”), and ©f1 = Xf1 (for “next-time f1”),

f1 U f2 = f1 U f2 (alternative typesetting for until).

The formula combination GFf1 is read as “infinitely often”.

Keijo Heljanko

Tik-79.186 Reactive Systems 11

'

&

$

%

Some examples of practical use of LTL formulas in specification are:

• 2¬(cs1 ∧ cs2) (it always holds that two processes are not at the same time in a

critical section),

• 2(req → 3ack) (it is always the case that a request is eventually followed by an

acknowledgement), and

• ((23sch1) ∧ (23sch2)) → (2(tr1 → 3cs1)) (if both process 1 and 2 are

scheduled infinitely often, then always the entering of process 1 in the trying

section is followed by the process 1 eventually entering the critical section).

Keijo Heljanko

Tik-79.186 Reactive Systems 12

'

&

$

%

Semantics of LTL in a Path

We denote the fact that an LTL formula f holds in a path π with the notation π |= f .

Another way of saying π |= f is that the path π is a model of the formula f .

The term model checking in fact refers to the fact that we are checking whether the

behaviors of the system are models of the specification formula.

Keijo Heljanko

Tik-79.186 Reactive Systems 13

'

&

$

%

Notation for Paths

We use πi to denote the suffix of the path π = s0, s1, s2, . . . starting at index i, and

thus πi = si, si+1, si+2,

We use π0 to denote the first state of the path π = s0, s1, s2, . . ., namely s0.

We next inductively define the |= relation (when does a path π of the Kripke structure

fulfill its specification f).

Keijo Heljanko

Tik-79.186 Reactive Systems 14

'

&

$

%

Semantics, part I

The relation π |= f is defined inductively as follows:

• π |= true

• π 6|= false

• π |= p iff p ∈ L(π0) for p ∈ AP

• π |= ¬f1 iff not π |= f1

• π |= f1 ∨ f2 iff π |= f1 or π |= f2

• π |= f1 ∧ f2 iff π |= f1 and π |= f2

Keijo Heljanko

Tik-79.186 Reactive Systems 15

'

&

$

%

Semantics, part II

• π |= X f1 iff π1 |= f1

• π |= f1 U f2 iff there is j ≥ 0, such that πj |= f2 and for all 0 ≤ i < j, πi |= f1

• π |= f1 R f2 iff for all j ≥ 0, if for every 0 ≤ i < j πi 6|= f1 then πj |= f2

(Or equivalently:

π |= f1 R f2 iff

((there is j ≥ 0, such that πj |= f1 ∧ f2 and for every 0 ≤ i < j, πj |= f2), or

(πk |= f2 for all k ≥ 0)).)

The alternative defintion of release is basically expressing release as:

f1 R f2 = f2 U (f1 ∧ f2) ∨2f2.

Keijo Heljanko

Tik-79.186 Reactive Systems 16

'

&

$

%

Semantics, part III

If we want, we can also express the semantics of 3f1 and 2f1 directly, instead of using

the definitions 3f1 = trueU f1, and Gf1 = falseR f1:

• π |= 3f1 iff there is i ≥ 0, such that πi |= f1

• π |= 2f1 iff for all i ≥ 0, πi |= f1

Keijo Heljanko

Tik-79.186 Reactive Systems 17

'

&

$

%

Semantics in a State

We also want to define when a formula f holds in a state s in a Kripke structure M .

Definition 2 An LTL formula f holds in a state s of Kripke structure M , denoted
M, s |= f , iff for all paths π in M , such that π0 = s, it holds that π |= f .

Thus a formula f holds in s iff it holds for all paths starting at s.

Note: The LTL formulas are evaluated in paths. A single state can appear many times

in a path, and have different LTL formulas holding at the different instances of the

same state!

Keijo Heljanko

Tik-79.186 Reactive Systems 18

'

&

$

%

Semantics in a Kripke Structure

Now we want to also define when a Kripke structure satisfies the LTL specification f .

Definition 3 An LTL formula f holds in a Kripke structure M , denoted M |= f iff
M, s0 |= f .

We will in the future use logics which have both explicit A : “for all paths”, and E :
“there exist a path” quantifications in the language. As shown above, the standard

LTL interpretation adds an implicit “for all paths” quantification in front of the

(top-level) LTL formula. Intuitively this means that out LTL specifications specify

properties which should hold for all behaviors (paths) of the system.

Keijo Heljanko

