T-79.186 Reactive Systems:
Kripke Structures and Automata
Spring 2005, Lecture 3

Keijo Heljanko
January 31, 2005
Properties of Systems

- **invariants**: “the system never reaches a bad state”; in each reachable state \(P \) holds
 - deadlock freedom
 - mutual exclusion etc.

- **safety**: “a bad sequence of things does no happen”; each violation of a safety property can be observed by looking at finite “history” of the system behavior. Example: “the system should not reboot without the reset button being pressed first”.

 Invariants are a simple subclass of safety properties.

- **liveness**: “something good should eventually happen”; Example: \(X \) occurs infinitely often. Alternative formulation: “there is progress in the system”.

Keijo Heljanko
How to Specify and Check Properties?

Even simple looking systems can easily have thousands or millions of reachable states and enabled transitions. It does not make sense to graphically represent or manually explore each node and arc of so large graphs.

Invariant properties, such as deadlock freedom or the unreachability of a forbidden state, can be formulated as conditions concerning one state at a time, which a reachability analysis algorithm can easily verify when adding nodes to the reachability graph.

Formulating and verifying safety, and (especially) liveness properties ("something good should eventually happen") call for new methods, such as temporal logic and model checking.
Temporal logics are traditionally defined in terms of **Kripke structures**. A Kripke structure is a modeling formalism independent way of representing the behavior of a system. A Kripke structure is basically a graph having the reachable states of the system as nodes and state transitions of the system as edges. It also contains a labeling of the states of the system with properties that hold in each state.

To obtain a Kripke structure form the reachability graph one first needs to fix a set of atomic propositions \(AP \), which denote the properties of individual states we are interested in. The labeling of the states (with markings) of the reachability graph is replaced with the labeling showing which atomic propositions hold in that state. (Note: This does NOT mean states with the same label should be merged!)

After this the labels (with transitions) on the arcs of the reachability graph are removed, and the result is the Kripke structure. (Note: The removal of arc labels might result in a merging of some edges.)
Definition of Kripke Structures

Definition 1 Let AP be a non-empty set of atomic propositions. A Kripke structure is a four tuple $M = (S, s^0, R, L)$, where

- S is a finite set of states,
- $s^0 \in S$ is an initial state,
- $R \subseteq S \times S$ is a transition relation, for which it holds that $\forall s \in S : \exists s' \in S : (s, s') \in R$, and
- $L : S \rightarrow 2^{AP}$ is labeling, a function which labels each state with the atomic propositions which hold in that state.
Kripke Structures

Kripke structures are the model used to give semantics (definition of when a specified property holds) for the most widely used specification languages for reactive systems, namely temporal logics.

Kripke structures can be seen as describing the behavior of the modeled system in an modeling language independent manner. Therefore, temporal logics are really modeling formalism independent. The definition of atomic propositions is the only thing that can needs to be adjusted for each formalism.

Note that in Kripke structures deadlock states are disallowed. This is for technical reasons (it simplifies the theory somewhat). Should a reachability graph contain a deadlock state, in the corresponding Kripke structure we add an edge from the deadlock state back to itself.
Example: Reachability Graph of a Mutex System

The following is a reachability graph of a model of a Mutex algorithm.
Example: Kripke Structure of the Mutex System

Keijo Heljanko
Kripke Structures and Automata

As can be directly seen from the definition Kripke structures have a close relationship with automata.

The changes are the following:

- labeling is on states instead of having labels on arcs,
- the labeling consists of a subset of AP instead of an element of Σ,
- there is at most one arc between any two states, and
- there is no definition of final states. (One can think of all the states being final.)
From Kripke Structure to Finite State Automaton

An often used trick is to actually use an automaton directly derived from the Kripke structure in model checking. We define an automaton A_M, which accepts exactly the (finite) sequences of valuations in a path through the Kripke structure.
From Kripke Structures to Finite State Automaton

Let $M = (S, s^0, R, L)$ be a Kripke structure over a set of atomic propositions AP. Define an automaton $A_M = (\Sigma, S_M, S^0_M, \Delta_M, F_M)$, where

- $\Sigma = 2^{AP}$,
- $S_M = S \cup \{s^i\}$,
- $S^0_M = \{s^i\}$,
- For all $s, s' \in S_M, a \in \Sigma : (s, a, s') \in \Delta_M$ iff $L(s') = a$ and $(((s, s') \in R)$ or $(s = s^i$ and $s' = s^0))$; and
- $F_M = S_M$.

Keijo Heljanko
Example: The Automaton A_M

All states are final.

Keijo Heljanko
An example safety property for a path in the Kripke structure is the following:

$Spec$: A (finite) path in the Kripke structure satisfies $Spec$ iff it does not contain a state having both $CR0$ and $CR1$ holding at the same time.

It is easy to give a specification automaton S which accepts all sequences of A_M corresponding to paths which satisfy this property. (A two-state deterministic automaton will suffice.)
In this case the complement of the specification $\neg \text{Spec}$ is the following:

A (finite) path in the Kripke structure satisfies $\neg \text{Spec}$ iff it contains a state in which both CR0 and CR1 hold at the same time.

It can be checked by an automaton \overline{S} (also a simple two-state deterministic automaton).

Now all paths through the Kripke structure satisfy Spec iff there is no path which satisfies $\neg \text{Spec}$.
To implement this, we can use automata theory to obtain the product automaton $P = A_M \times \overline{S}$, and check that indeed $L(P) = \emptyset$. (By observing that no accepting state of P is reachable from its initial states.)

Thus in our running example the safety property $Spec$ holds for all paths through the Kripke structure M.

IMPLEMENTING SAFETY MODEL CHECKING
WHY NOT USE AUTOMATA AS THE SPECIFICATION LANGUAGE?

For even slightly more complicated specifications expressing the specification directly as an automaton can be too complicated. This is one of the reasons temporal logics are more widely used as a specification formalisms as are automata.

It is expensive to complement automata. Thus even if the specification can be easily expressed as an automaton, its complement can be too big to handle.

Liveness properties cannot be handled by finite state automata on finite strings. Thus to handle liveness, we have to change our definition of automata. This brings new problems we have not encountered so far.

Automata are, however, one of the main implementation techniques in implementing model checking algorithms for more expressive temporal logics, a subject which we will discuss next.

Keijo Heljanko