
Tik-79.186 Reactive Systems 1

'

&

$

%

T-79.186 Reactive Systems:

Kripke Structures and Automata
Spring 2005, Lecture 3

Keijo Heljanko

January 31, 2005

Keijo Heljanko



Tik-79.186 Reactive Systems 2

'

&

$

%

Properties of systems

• invariants: “the system never reaches a bad state”; in each reachable state P holds

– deadlock freedom

– mutual exclusion etc.

• safety: “a bad sequence of things does no happen”; each violation of a safety

property can be observed by looking at finite “history” of the system behavior.

Example: “the system should not reboot without the reset button being pressed

first”.

Invariants are a simple subclass of safety properties.

• liveness: “something good should eventually happen”; Example: X occurs

infinitely often. Alternative formulation: “there is progress in the system”.

Keijo Heljanko



Tik-79.186 Reactive Systems 3

'

&

$

%

How to Specify and Check Properties?

Even simple looking systems can easily have thousands or millions of reachable states

and enabled transitions. It does not make sense to graphically represent or manually

explore each node and arc of so large graphs.

Invariant properties, such as deadlock freedom or the unreachability of a forbidden

state, can be formulated as conditions concerning one state at a time, which a

reachability analysis algorithm can easily verify when adding nodes to the reachability

graph.

Formulating and verifying safety, and (especially) liveness properties (“something good

should eventually happen”) call for new methods, such as temporal logic and model

checking.

Keijo Heljanko



Tik-79.186 Reactive Systems 4

'

&

$

%

Kripke Structures

Temporal logics are traditionally defined in terms of Kripke structures. A Kripke

structure is a modeling formalism independent way of representing the behavior of a

system. A Kripke structure is basically a graph having the reachable states of the

system as nodes and state transitions of the system as edges. It also contains a labeling

of the states of the system with properties that hold in each state.

To obtain a Kripke structure form the reachability graph one first needs to fix a set of

atomic propositions AP , which denote the properties of individual states we are

interested in. The labeling of the states (with markings) of the reachability graph is

replaced with the labeling showing which atomic propositions hold in that state. (Note:

This does NOT mean states with the same label should be merged!)

After this the labels (with transitions) on the arcs of the reachability graph are

removed, and the result is the Kripke structure. (Note: The removal of arc labels might

result in a merging of some edges.)

Keijo Heljanko



Tik-79.186 Reactive Systems 5

'

&

$

%

Definition of Kripke Structures

Definition 1 Let AP be a non-empty set of atomic propositions. A Kripke
structure is a four tuple M = (S, s0, R, L), where

• S is a finite set of states,

• s0 ∈ S is an initial state,

• R ⊆ S × S is a transition relation, for which it holds that
∀s ∈ S : ∃s′ ∈ S : (s, s′) ∈ R, and

• L : S → 2AP is labeling, a function which labels each state with the atomic
propositions which hold in that state.

Keijo Heljanko



Tik-79.186 Reactive Systems 6

'

&

$

%

Kripke Structures

Kripke structures are the model used to give semantics (definition of when a specified

property holds) for the most widely used specification languages for reactive systems,

namely temporal logics.

Kripke structures can be seen as describing the behavior of the modeled system in an

modeling language independent manner. Therefore, temporal logics are really modeling

formalism independent. The definition of atomic propositions is the only thing that can

needs to be adjusted for each formalism.

Note that in Kripke structures deadlock states are disallowed. This is for technical

reasons (it simplifies the theory somewhat). Should a reachability graph contain a

deadlock state, in the corresponding Kripke structure we add an edge from the

deadlock state back to itself.

Keijo Heljanko



Tik-79.186 Reactive Systems 7

'

&

$

%

Example:Reachability Graph of a Mutex System

The following is a reachability graph of a model of a Mutex algorithm.

idle0 idle1

try0 try1

try1 try0

non_critical0 non_critical1

go_critical0 go_critical1

go_critical0 go_critical1try1 try0

non_critical0 non_critical1

P:<0,TRY>+<1,TRY>
T:<0>

T:<0>
P:<0,TRY>+<1,NC>

T:<0>
P:<0,TRY>+<1,TRY>
T:<1>

T:<NONE>

T:<1>

T:<1>

T:<1>T:<0>

P:<0,NC>+<1,NC>

P:<0,NC>+<1,TRY>

P:<0,CS>+<1,NC> P:<0,NC>+<1,CS>

P:<0,CS>+<1,TRY> P:<0,TRY>+<1,CS>

s0

s1 s2

s3s4

s7

s5 s6

s8

Keijo Heljanko



Tik-79.186 Reactive Systems 8

'

&

$

%

Example: Kripke Structure of the Mutex System

L = {TRY0, TRY1}

L = {TRY0, NC1}

L = {TRY0, TRY1}

L = {NC0, NC1}

L = {NC0, TRY1}

L =  {CS0, NC1} L = {NC0, CS1}

L = {CS0, TRY1} L = {TRY0, CS1}

s1 s2

s3s4

s7

s5 s6

s8

s0

Keijo Heljanko



Tik-79.186 Reactive Systems 9

'

&

$

%

Kripke Structures and Automata

As can be directly seen from the definition Kripke structures have a close relationship

with automata.

The changes are the following:

• labeling is on states instead of having labels on arcs,

• the labeling consists of a subset of AP instead of an element of Σ,

• there is at most one arc between any two states, and

• there is no definition of final states. (One can think of all the states being final.)

Keijo Heljanko



Tik-79.186 Reactive Systems 10

'

&

$

%

From Kripke Structure to Finite State Automaton

An often used trick is to actually use an automaton directly derived from the Kripke

structure in model checking. We define an automaton AM , which accepts exactly the

(finite) sequences of valuations in a path through the Kripke structure.

Keijo Heljanko



Tik-79.186 Reactive Systems 11

'

&

$

%

From Kripke Structures to Finite State Automaton

Let M = (S, s0, R, L) be a Kripke structure over a set of atomic propositions AP .

Define an automaton AM = (Σ, SM , S0
M ,∆M , FM ), where

• Σ = 2AP ,

• SM = S ∪ {si},
• S0

M = {si},
• For all s, s′ ∈ SM , a ∈ Σ : (s, a, s′) ∈ ∆M iff

L(s′) = a and (((s, s′) ∈ R) or (s = si and s′ = s0)); and

• FM = SM .

Keijo Heljanko



Tik-79.186 Reactive Systems 12

'

&

$

%

Example: The Automaton AM

s1 s2

s3s4

s7

s5 s6

s8

s0

si
All states are final.

{NC0, NC1}

{NC0, NC1}
{NC0, NC1}{NC0, NC1}

{TRY0, NC1} {NC0, TRY1}

{NC0, TRY1}

{CS0, TRY1} {CS0, TRY1}

{TRY0, TRY1} {NC0, CS1}

{TRY0, CS1} {TRY0, CS1}

{TRY0, NC1}

{TRY0, TRY1}{CS0, NC1}

Keijo Heljanko



Tik-79.186 Reactive Systems 13

'

&

$

%

Model Checking of Safety Properties with Automata

An example safety property for a path in the Kripke structure is the following:

Spec: A (finite) path in the Kripke structure satisfies Spec iff it does not contain a

state having both CR0 and CR1 holding at the same time.

It is easy to give a specification automaton S which accepts all sequences of AM

corresponding to paths which satisfy this property. (A two-state deterministic

automaton will suffice.)

Keijo Heljanko



Tik-79.186 Reactive Systems 14

'

&

$

%

In this case the complement of the specification ¬Spec is the following:

A (finite) path in the Kripke structure satisfies ¬Spec iff it contains a state in which

both CR0 and CR1 hold at the same time.

It can be checked by an automaton S (also a simple two-state deterministic

automaton).

Now all paths through the Kripke structure satisfy Spec iff there is no path which

satisfies ¬Spec.

Keijo Heljanko



Tik-79.186 Reactive Systems 15

'

&

$

%

Implementing Safety Model Checking

To implement this, we can use automata theory to obtain the product automaton

P = AM × S, and check that indeed L(P) = ∅. (By observing that no accepting state

of P is reachable from its initial states.)

Thus in our running example the safety property Spec holds for all paths through the

Kripke structure M .

Keijo Heljanko



Tik-79.186 Reactive Systems 16

'

&

$

%

Why not Use Automata as the Specification Language?

For even slightly more complicated specifications expressing the specification directly as

an automaton can be too complicated. This is one of the reasons temporal logics are

more widely used as a specification formalisms as are automata.

It is expensive to complement automata. Thus even if the specification can be easily

expressed as an automaton, its complement can be too big to handle.

Liveness properties cannot be handled by finite state automata on finite strings. Thus

to handle liveness, we have to change our definition of automata. This brings new

problems we have not encountered so far.

Automata are, however, one of the main implementation techniques in implementing

model checking algorithms for more expressive temporal logics, a subject which we will

discuss next.

Keijo Heljanko


