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Example: Operations on Automata

Consider the following automata A1 and A2, both over the alphabet Σ = {a, b}.
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Example: Union of Automata

The following automaton A is their union, in other words A = A1 ∪ A2.
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Example: Intersection of Automata

The following automaton A is their intersection, in other words A = A1 ∩ A2.
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Complementing Nondeterministic Automata

The operations we have defined for finite state automata so far have resulted in

automata whose size is polynomial in the sizes of input automata.

The most straightforward way of implementing complementation of a non-deterministic

automaton is to first determinize it, and after this to complement the corresponding

deterministic automaton.

Unfortunately determinization yields an exponential blow up. (A worst-case exponential

blow-up is in fact unavoidable in complementing non-deterministic automata.)
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Determinization of finite state automata can be done as follows:

Definition 1 Let A1 = (Σ, S1, S
0
1 ,∆1, F1) be a non-deterministic automaton. We

define a deterministic automaton A = (Σ, S, S0, ∆, F ), where

• S = 2S1 , the set of all sets of states in S1,

• S0 = {S0
1}, a single state containing all the initial states of A1,

• (Q, a,Q′) ∈ ∆ iff
Q ∈ S, a ∈ Σ, and Q′ = {s′ ∈ S1 | there is (s, a, s′) ∈ ∆1 such that s ∈ Q}; and

• F = {s ∈ S | S ∩ F1 6= ∅}, those states in S which contain at least one
accepting state of A1.
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The intuition behind the construction is that it combines all possible runs on given

input word into one run, where we keep track of all the possible states we can currently

be in by using the “state label”. (The automaton state consists of the set of states in

which the automaton can be in after reading the input so far.)

We denote the construction of the previous slide with A = det(A1) Note that

L(A) = L(A1), and A is deterministic. If A1 has n states, the automaton A will

contain 2n states.

Note also that the determinization construction gives an automaton A with a

completely specified transition relation as output. Thus to complement an automaton

A1, we can use the procedure A = det(A1), A′ = A, and we get that

L(A′) = Σ∗ \ L(A) = Σ∗ \ L(A1) = L(A1).

To optimize the construction slightly, usually only those states of A which are

reachable from the initial state are added to set of states set of A.
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Example: Determinization of Automata

We want to determinize the following automaton A1 over the alphabet Σ = {a, b}.
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Example: Determinization Result

As a result we obtain the automaton A below. (Only the reachable part shown!)
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Example: Complementation

Let’s call the result of the previous slide A1, and complement the result. We get:

b

a

A

{q0}

a

b

a

b

{q3, q4}

a

a

b
b

∅

{q2}

{q1, q2, q3, q4}

{q4}

a, b

Keijo Heljanko



Tik-79.186 Reactive Systems 11

'

&

$

%

We have now shown that finite state automata are closed under all Boolean operations,

as with ∪, ∩, and A all other Boolean operations can be done.

All operations except for determinization (which is also used to complement

nondeterministic automata!) created a polynomial size output in the size of the inputs.

Note, however, that even if A1,A2,A3,A4 have k states each, the automaton

A′4 = A1 ∩ A2 ∩ A3 ∩ A4 (alternatively denoted by A′4 = A1 ×A2 ×A3 ×A4) can

have k4 states, and thus in the general A′i will have ki states. Therefore even if if a

single use of ∩ is polynomial, repeated applications often will result in a state explosion

problem.

In fact, the use of × as demonstrated above (or some slight variation of the definition)

is the main way of composing a reactive system out of its components when using an

automata based modeling formalism.
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Checking Safety Properties with FSA

A safety property be informally described as a property stating that “nothing bad

should happen”. (We will come back to the formal definition later in the course.)

When checking safety properties, the behavior of a system can be described by a finite

state automaton, call it A.

Also in most cases the allowed behaviors of the system can be specified by another

automaton, call it the specification automaton S.

Assume that the specification specifies all legal behaviors of the system. In other words

a system is incorrect if it has some behavior (accepts a word) that is not accepted by

the specification. In other words a correct implementation has less behavior than the

specification, or more formally L(A) ⊆ L(S).
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Checking whether L(A) ⊆ L(S) holds is referred to as performing a language

containment check.

By using simple automata theoretic constructions given above, we can now check

whether the system meets its specification. Namely, we can create a product automaton

P = A ∩ S and then check whether L(P) = ∅.
In case the safety property does not hold, the automaton P has a counterexample run

rp which accepts a word w, such that w ∈ L(A) but w 6∈ L(S).

By projecting rp on the states of A one can obtain a run of ra of the system (a

sequence of states of the system) which violates the specification S.
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Example: Safety Property

Consider the problem of mutual exclusion. Assume that the alphabet is

Σ = {e1, e2, l1, l2}, where e1 means that process 1 enters the critical section and l1

means that process 1 leaves the critical section. (For simplicity we assume these are

the only actions possible in the system.) The automaton S specifying correct mutual

exclusion property is the following.

e1

e2

s0

S

l2

l1

s2

s1
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Example: Safety Property

If we want to check whether L(A) ⊆ L(S), we need to complement S. We get the

following:

e1

e2

S

{s2}

{s1}

l2

l1

l1, l2

e1, e2, l2

e1, e2, l1

{s0}
e1, e2, l1, l2

∅
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If we now have an automaton A modeling the behavior of the mutex system, we can

create the product automaton P = A ∩ det(S). Now the mutex system is correct iff

the automaton P does not accept any word.
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Example 2: Safety Property

Assume we are testing a data-communications protocol for message duplication. We

have already added as a data-source a sender, whose sends an arbitrarily long sequence

of message m0 messages, followed by a single m1, followed by an arbitrary number of

m2 messages. If the data communication protocol does not look at its payload, we can

see if the protocol duplicates messages by checking whether the data stream read by

the receiver is within the following language over the alphabet Σ = {m0,m1,m2}:

s0 s1
S

m1

m2m0
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