
Tik-79.186 Reactive Systems 1

'

&

$

%

T-79.186 Reactive Systems: Introduction and

Finite State Automata
Spring 2005, Lecture 1

Keijo Heljanko

January 31, 2005

Keijo Heljanko

Tik-79.186 Reactive Systems 2

'

&

$

%

1 Course Arrangements

To pass the course you need to do all of (a), (b), and (c):

(a) Give your share of seminar talks. You will get a base grade from the seminar talks.

(b) Do home exercises There will be 5 rounds of 6 points/round of home exercises

graded as follows:

– At least 50% of the points needed to pass.

– At least 80% of the points gives “+1” to your seminar talk grade.

(c) Do a course project (a programming assignment). This will be graded pass/fail.

Keijo Heljanko

Tik-79.186 Reactive Systems 3

'

&

$

%

The weekly course schedule is as follows:

• Mon 16:15 Homework deadline

• Mon 16:15 Homework distribution

• Mon 16:15-18:00 Lectures or Seminar (Keijo Heljanko)

• Mon 18:15-19:00 Tutorials or Seminar (Misa Keinänen) Homework answers

Return the home exercises by email (Postscript or PDF, no Word docs!) to the course

assistant Misa Keinänen (mkk@tcs.hut.fi).

Keijo Heljanko

Tik-79.186 Reactive Systems 4

'

&

$

%

Reactive Systems

Reactive systems are a class of software and/or hardware systems which have ongoing

behavior. (They do not terminate.)

Examples of reactive systems include:

• Traffic lights

• Elevators (lifts)

• Operating systems

• Data communication protocols (Internet,telephone switches)

• Mobile phones

Keijo Heljanko

Tik-79.186 Reactive Systems 5

'

&

$

%

Reactive systems do not fulfill the definition of an algorithm, which says that an

algorithm should:

• Terminate, and

• upon termination, provide a (hopefully correct) return value.

If we want to specify the correctness of an algorithm, we usually specify it as follows:

• The algorithm should terminate on all (allowed) inputs, and

• on termination, the provided output should correct (with respect to a specification).

Keijo Heljanko

Tik-79.186 Reactive Systems 6

'

&

$

%

The Need for Formal Methods

Hardware and software are widely used in applications where failure is unacceptable

(safety or business critical systems): ecommerce, communication networks, air traffic

control, medical systems, etc.

Two costly system failures experienced:

• Intel: Pentium FDIV bug (1994, estimated $500 million)

• Ariane 5: floating point overflow (1996, $500 million)

Probably our dependence on critical systems (e.g. the Internet, cars, airplanes, . . .) is

growing instead of diminishing.

Keijo Heljanko

Tik-79.186 Reactive Systems 7

'

&

$

%

Hardware and Software Verification

The principal methods for the validation of complex systems are

• Testing (using the system itself)

• Simulation (using a model of the system)

• Deductive verification (proof of correctness by e.g. axioms and proof rules, usually

including computer aided proof assistants)

• Model Checking (≈ exhaustive testing of a model of a system)

Keijo Heljanko

Tik-79.186 Reactive Systems 8

'

&

$

%

Reactive systems are often concurrent and sometimes also nondeterministic. This limits

the applicability of testing based methods.

Deductive verification needs highly advanced personnel and time. (Has been used in

highly critical systems where high cost is not an objective.)

Keijo Heljanko

Tik-79.186 Reactive Systems 9

'

&

$

%

What is Needed to Verify Reactive Systems?

We need to address the following issues.

• How do we build a model of a reactive system?

• How do we specify the correctness of reactive systems?

• How do we check whether the system meets its specification?

We will address the issues of modeling, specification, and verification in this course.

Keijo Heljanko

Tik-79.186 Reactive Systems 10

'

&

$

%

Model Checking

Model checking is a technique for verifying reactive systems. It has several advantages

over traditional approaches (simulation, testing, deductive reasoning) to this problem.

Reachability analysis can be seen as a very basic model checking approach.

The method has been successfully used to verify circuit designs (e.g. microprocessors),

and communication protocols.

The main challenge in using the approach is the state explosion problem. Tackling

this problem is still the main source of research into model checking.

The books discuss how model checking is used to verify complex reactive systems. Also

theoretical and algorithmic aspects of model checking are covered.

Keijo Heljanko

Tik-79.186 Reactive Systems 11

'

&

$

%

Model checking limits itself to systems where decidability is guaranteed (e.g. systems

with only a finite number of state bits). Given sufficient amount of time and memory,

a model checking tool is guaranteed to terminate with a YES/NO answer.

Instances of finite state systems handled with model checking include e.g. hardware

controllers and communication protocols.

Keijo Heljanko

Tik-79.186 Reactive Systems 12

'

&

$

%

In some cases bugs can be found from infinite state systems by restricting them to

finite state ones. One can for example model message FIFOs of infinite size with

bounded size FIFOs, and still find some of the bugs bugs which appear in the (harder)

infinite-state case. Note that if no bugs are found in the finite-state version, that does

not mean that the infinite-state version is correct!

Model checking can be performed automatically, which is different from deductive

verification. It can thus be used for automatic regression testing.

Keijo Heljanko

Tik-79.186 Reactive Systems 13

'

&

$

%

The Process of Model Checking

In model checking process the following phase can be identified:

• Modeling - How to model your system in a way acceptable from a model checking

perspective. This can be as easy as compilation or may involve deep insight into

the system being modeled. In this course we will mainly use Petri nets as the

modeling formalism.

• Specification - What properties should the system satisfy? Most model checkers

use temporal logic to specify the properties, but there might be some standard

properties one would like to check (e.g. deadlock freedom).

• Verification - Push the “model check” button. In practice life is not this easy, and

analysis of the model checking results is needed. If for example a property does not

hold, where does the bug exist? Model checkers produce counterexamples which

help in locating the bug. The bug might also be in the specification or in the

system model, so these must be analyzed carefully.

Keijo Heljanko

Tik-79.186 Reactive Systems 14

'

&

$

%

Temporal Logic and Model Checking

Temporal logics were originally developed by philosophers for reasoning about the way

time was used in natural language. Lots of different temporal logics have been

suggested. There are two main branches of logics: linear time and branching time

logics. The meaning of a temporal logic formula will be determined with respect to a

Kripke structure.

Pnueli was the first to use temporal logics for reasoning about concurrent systems. In

the early 1980’s Clarke and Emerson in USA, and Quielle and Sifakis in France gave

model checking algorithms for branching time logics (CTL). The EMC algorithm by

Clarke, Emerson and Sistla was the first linear-time algorithm for CTL in 1987.

Keijo Heljanko

Tik-79.186 Reactive Systems 15

'

&

$

%

Sistla and Clarke analyzed the model checking problem for a linear time logic (LTL)

and showed it to be PSPACE-complete. Later Lichtenstein and Pnueli made a more

careful analysis which showed that the PSPACE-completeness is only in the size of the

formula, and not the state space of the system.

Other temporal logics include CTL∗ and µ-calculus. Also regular expressions and

automata on infinite words (ω-automata) have been used for specification.

We will in this course mainly concentrate on LTL model checking using ω-automata.

We will start by first introducing finite state automata. They can be seen as a “helper

formalism” used inside model checkers to implement model checking algorithms. They

can be used to implement model checking of so called safety properties, as well as used

to model systems themselves.

Keijo Heljanko

Tik-79.186 Reactive Systems 16

'

&

$

%

Automata on Finite Words

Automata on finite words can also be used to model finite state systems, as well as

specifications for systems.

Definition 1 A (nondeterministic finite) automaton A is a tuple (Σ, S, S0,∆, F),
where

• Σ is a finite alphabet,

• S is a finite set of states,

• S0 ⊆ S is set of initial states,

• ∆ ⊆ S × Σ× S is the transition relation, and

• F ⊆ S is the set of accepting states.

An automaton A is deterministic if |S0| = 1 and for all pairs s ∈ S, a ∈ Σ it holds

that if for some s′ ∈ S: (s, a, s′) ∈ ∆ then there is no s′′ ∈ S such that s′′ 6= s′ and

(s, a, s′′) ∈ ∆.

(I.e., there is only at most one state which can be reached from s with a.)

Keijo Heljanko

Tik-79.186 Reactive Systems 17

'

&

$

%

The meaning of the transition relation ∆ ⊆ S × Σ× S is the following: (s, a, s′) ∈ ∆
means that there is a move from state s to state s′ with symbol a.

An alternative (equivalent) definition gives the transition relation as a function

ρ : S ×Σ → 2S , where ρ(s, a) gives the set of states to which the automaton can move

with a from state s.

Synonyms for the word automaton are: finite state machine (FSM), finite state

automaton (FSA), nondeterministic finite automaton (NFA), and finite automaton on

finite strings.

Keijo Heljanko

Tik-79.186 Reactive Systems 18

'

&

$

%

Runs and Languages

A finite automaton accepts a set of words L(A) ⊆ Σ∗ called the language accepted by

A, defined as follows:

A run r of A on a finite word a0, . . . , an−1 ∈ Σ∗ is a sequence s0, . . . , sn of (n + 1)

states in S, such that s0 ∈ S0, and (si, ai, si+1) ∈ ∆ for all 0 ≤ i < n.

The run r is accepting iff sn ∈ F . A word w ∈ Σ∗ is accepted by A iff A has an

accepting run on w.

The language of A, denoted L(A) ⊆ Σ∗ is the set of finite words accepted by A.

A language of automaton A is said to be empty when L(A) = ∅.

Keijo Heljanko

Tik-79.186 Reactive Systems 19

'

&

$

%

Operations with Automata

To make ourselves more familiar with finite state automata, we will show how simple

operations with them can be performed.

We will do this by defining the Boolean operators for finite automata:

A = A1 ∪ A2,A = A1 ∩ A2, and A = A1.

These operations will as a result have an automaton A, such that:

L(A) = L(A1) ∪ L(A2),L(A) = L(A1) ∩ L(A2), and L(A) = L(A1), respectively.

In the following we furthermore assume the the automata are disjoint (i.e., they have

no states in common), and that they have the same alphabet Σ.

Keijo Heljanko

Tik-79.186 Reactive Systems 20

'

&

$

%

We start by A = A1 ∪ A2:

Definition 2 Let A1 = (Σ, S1, S
0
1 ,∆1, F1) and A2 = (Σ, S2, S

0
2 , ∆2, F2). We define

the union automaton to be A = (Σ, S, S0,∆, F), where:

• S = S1 ∪ S2,

• S0 = S0
1 ∪ S0

2 ,

• ∆ = ∆1 ∪ ∆2, and

• F = F1 ∪ F2.

Now for the union automaton A (also denoted by A1 ∪ A2) it holds that

L(A) = L(A1) ∪ L(A2).

Keijo Heljanko

Tik-79.186 Reactive Systems 21

'

&

$

%

Next we define A = A1 ∩ A2:

Definition 3 Let A1 = (Σ, S1, S
0
1 ,∆1, F1) and A2 = (Σ, S2, S

0
2 , ∆2, F2). We define

the product automaton to be A = (Σ, S, S0, ∆, F), where:

• S = S1 × S2,

• S0 = S0
1 × S0

2 ,

• for all s, s′ ∈ S1, t, t
′ ∈ S2, a ∈ Σ:

((s, t), a, (s′, t′)) ∈ ∆ iff (s, a, s′) ∈ ∆1 and (t, a, t′) ∈ ∆2; and

• F = F1 × F2.

Now for the product automaton A (also denoted by A1 ×A2 and A1 ∩ A2) it holds

that

L(A) = L(A1) ∩ L(A2).

Keijo Heljanko

Tik-79.186 Reactive Systems 22

'

&

$

%

The definition of complementation is slightly more complicated.

We say that an automaton has a completely specified transition relation if for all

states s ∈ S and symbols a ∈ Σ there exist a state s′ ∈ S such that (s, a, s′) ∈ ∆.

Any automaton which does not have a completely specified transition relation can be

turned into one by:

• adding a new sink state qs,

• making qs a non-accepting state,

• adding for all a ∈ Σ an arc (qs, a, qs), and

• for all pairs s ∈ S, a ∈ Σ: if there is no state s′ such that (s, a, s′) ∈ ∆, then add

an arc (s, a, qs). (Add all those arcs which are still missing to fulfill the completely

specified property.)

Note that this construction does not change the language accepted by the automaton.

Keijo Heljanko

Tik-79.186 Reactive Systems 23

'

&

$

%

We first give a complementation definition which only works for completely

specified deterministic automata!

Definition 4 Let A1 = (Σ, S1, S
0
1 ,∆1, F1) be a deterministic automaton with a

completely specified transition relation. We define the deterministic complement

automaton to be A = (Σ, S, S0,∆, F), where:

• S = S1,

• S0 = S0
1 ,

• ∆ = ∆1, and

• F = S1 \ F1.

Now for the automaton A (also denoted by A1) it holds that L(A) = Σ∗ \ L(A1).

Keijo Heljanko

