Spring 2005

T-79.186 Reactive Systems Home Exercise 4 Deadline 4.4 16.15

Return your answers by email (Postscript or PDF) to Misa.Keinanen@hut.fi, or on paper to the lecture. Remember to include your name *and* student number.

For this home exercise round use the automata definition used in the lecture slides.

- 1.) For each LTL formula f_i below construct a Büchi automaton \mathcal{A}_i that accepts the language $\{w \in (2^{AP_i})^{\omega} \mid w \models f_i\}$. In other words, the language contains exactly the infinite words which are models of the formula.
 - (a) $AP_a = \{p\}, f_a = \Box \diamondsuit p.$
 - (b) $AP_b = \{p\}, f_b = \Diamond \Box \neg p.$
 - (c) $AP_c = \{p, q\}, f_c = p\mathbf{U}q.$
 - (d) $AP_d = \{p, q\}, f_d = (\Diamond \Box p) \Rightarrow (\Diamond \Box q).$
 - (e) $AP_e = \{p\}, f_e = XXp.$
 - (f) $AP_f = \{p, q\}, f_g = p\mathbf{R}q.$
- 2.) In the book (Bérard et al: Chapter 7.4, p. 87–89) the history variables method is described. The basic idea is to introduce a new Boolean variable h_i for each (past) temporal subformula, and initialize all them to **false** in the initial state. The model is instrumented to record changes in the truth of the past temporal subformulas following the semantics of past temporal operators.

Let h'_i denote the value of the temporal subformula variable h_i in the previous time step, f_1, f_2 the values of variables corresponding to subformulas at the current time step, and finally f'_1, f'_2 the values of variables corresponding to subformulas at the previous time step.

With this notation the update rule for the formula $h = \mathbf{X}^{-1} f_1$ becomes:

 $h_i := f'_1$. Give the update rules for all the other formula types:

- (a) $h_i = p$ for $p \in AP$,
- (b) $h_i = \neg f_1$,
- (c) $h_i = f_1 \vee f_2$,
- (d) $h_i = \mathbf{G}^{-1} f_1$, and
- (e) $f_1 \mathbf{S} f_2$.

- 3.) Consider the automaton of Figure 7.1 of the book (Bérard et al., p. 87). Add history variables to the model to model check a temporal formula containing past time temporal operators by using a standard CTL model checker. Also give the CTL formulas to model check in the following two cases.
 - (a) $\mathbf{AG}(\mathbf{X}^{-1}alarm \Rightarrow \mathbf{F}^{-1}crash)$
 - (b) $\mathbf{AG}(\mathbf{F}^{-1} alarm \Rightarrow ((crash \lor alarm) \mathbf{S}(\mathbf{X}^{-1} ok)))$

Give the models with history variables added in the expressions in similar style to Figure 7.2, or notation similar to that of the exercise above.