T-79.186

Spring 2005

Reactive Systems Home Exercise 3 Deadline 14.3 16.15

Return your answers by email (Postscript or PDF) to Misa.Keinanen@hut.fi, or on paper to the lecture. Remember to include your name and student number.

For this home exercise round use the automata definition used in the lecture slides.

- 1.) (a) Given atomic propositions $TRY\theta$ and $CR\theta$, create an automaton S_1 , which accepts all (finite) sequences of valuations such that if $CR\theta$ holds at some index, then $TRY\theta$ has held at some earlier index.
 - (b) Given the atomics propositions P, Q and R, create an automaton S_2 , which accepts all (finite) sequences of valuations such that P precedes Q before R. Tip: R and Q do not have to become true at any point.
- 2) Express the following properties in LTL. (First define the atomic propositions and their meaning.)
 - (a) If message "m1" is sent infinitely many times by eh sender, then the message "m1" is received infinitely often by the receiver.
 - (b) Only finitely many messages are lost by the data channel "d1".
 - (c) Always when process "p1" is in the critical section, it will go to non-critical in a finite amount of time steps.
 - (d) If a message "m2" is received by the receiver, then the message "m2" was sent before (or at the same time moment) by the sender.
 - (e) If an addition is fed to a pipelined ALU unit, then the result is ready four time units later (use the X-operator to denote one time unit).
- 3) Given $\Sigma = \{a, b\}$, consider the following two Büchi automata.

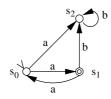


Figure 1: A_1

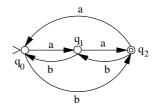


Figure 2: A_2

- (a) Is it true that $\mathcal{L}(\mathcal{A}_1) = \emptyset$?
- (b) Does automaton \mathcal{A}_1 accept the infinite string $(a)^{\omega}$?
- (c) Does automaton A_1 accept the infinite string $a(b)^{\omega}$?
- (d) Does automaton A_2 accept the infinite string $(abb)^{\omega}$?
- (e) Construct the product automaton $A_e = A_1 \times A_2$.
- (d) Is it true that $\mathcal{L}(\mathcal{A}_e) = \emptyset$?

Remember to justify your answer. Answering only yes/no or true/false will get you no points!