
Reactive Systems: Automata on Infinite Words, part II

Timo Latvala

February 25, 2004

Reactive Systems: Automata on Infinite Words, part II 11-1

Kripke Product

We’ll now show a small trick, using which AM×A¬ f can be replaced by a slightly smaller

automaton, which we call a Kripke product, and denote by AM⊗A¬ f .

In the special case F1 = S1 we can actually use a simpler product construction, we denote

it by A1⊗A2:

Let A1 = (Σ,S1,S
0
1,∆1,F1) and A2 = (Σ,S2,S

0
2,∆2,F2) be two Büchi automata, such that

for automaton A1 it holds that F1 = S1. (Note that this is the case when A1 is generated

from a Kripke structure.)

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-2

Definition 1 We define the Kripke product automaton to be A = (Σ,S,S0,∆,F), where:

• S= S1×S2,

• S0 = S0
1×S0

2,

• for all s,s′ ∈ S1, t, t
′ ∈ S2,a∈ Σ:

((s, t),a,(s′, t′)) ∈ ∆ iff (s,a,s′) ∈ ∆1 and (t,a, t′) ∈ ∆2; and

• F = S1×F2.

Now for the Kripke product Büchi automaton A (also denoted by A1⊗A2) it holds that
L(A) = L(A1)∩L(A2). (Side note: The above definition happens to be equivalent to
the FSA A = A1 ∩ A2 operation because S1 = F1!)

Now if A1 is a Kripke structure automaton AM, it fulfills the property above, and thus this
Kripke product construction can be used instead. (It has half as many states.)

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-3

Example: LTL Model Checking

Assume we want to check whether M |= f , where f = ¤(req⇒ (♦ack)) for the Kripke

structure M below. This can be solved by checking whether for the Kripke product auto-

maton P = AM⊗A¬ f it holds that L(P) = /0. If so, then M |= f , otherwise M 6|= f .

s0

s2s1

M

/0

{req}

{ack}

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-4

Büchi Automaton AM

AM

{req}

{req}

si

{req}

{ack}

s0

/0

s2s1

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-5

Büchi Automaton A¬ f

Now it is easy to see that ¬ f = ♦(req∧ (¤¬ack)).

t0 t1
/0,{req}

A¬ f
{req}

/0,{req},{ack},{req,ack}

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-6

Büchi Automaton P

P

{ack}

(s0, t0)

/0 /0

{req}

(s1, t0)

(s0, t1)

{req} {req}{req}

{req}

(s2, t1)

(si, t0)

(s2, t0){req}

{req}

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-7

Büchi Automaton P is Non-empty!

It is easy to see that the Büchi automaton P has accepting runs. An example is the run

r = (si, t0),(s0, t1),(s2, t1),(s0, t1),(s2, t1), Now inf (r) = {(s0, t1),(s2, t1)}, and thus

the run r is accepting.

The word accepted by r is: w = {req}, /0,{req}, /0,{req}, /0,

The path π the run r corresponds to can be obtained from r by projecting r on the first

component, and dropping the special state si from the beginning, i.e., π = s0,s2,s0,s2,

We also get that π |= ¬ f , and finally that M 6|= f .

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-8

Emptiness Checking for Büchi Automata

The following “nested depth-first search” algorithm can be used to check a Büchi auto-
maton for emptiness.

It uses a hash table to check whether a state s has already been visited by the algorithm.
A new state can be stored into this table using subroutine “hash(s)”.
For efficiency each hash table entry contains (only) two bits of additional information, both
initialized to zero value.

To manipulate these bits, there are the following subroutines. The subroutine “addstack1(s)”
turns the first bit to one, the subroutine “removestack1(s)” clears the first bit, and the sub-
routine “instack1(s)” returns “True” iff the first bit is set.

The subroutine “flag(s)” turns the second bit to one, and the subroutine “flagged(s)” re-
turns “True” iff the second bit is set.
c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-9

Algorithm 1 The top-level nested DFS algorithm

procedure emptiness
for all s∈ S0 do

dfs1(s);
terminate (False); // Automaton is empty

end procedure

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-10

Algorithm 2 The dfs1 subroutine

procedure dfs1(s)
local states′;
hash(s);
addstack1(s);
for all successorss′ of s do // ((s,a,s′) ∈ ∆ for somea∈ Σ)

if s′ is not in the hash tablethen dfs1(s′);
if s is an accepting statethen dfs2(s); // (s∈ F)
removestack1(s);

end procedure

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-11

Algorithm 3 The dfs2 subroutine

procedure dfs2(s)

local states′;
flag(s);

for all successorss′ of s do // ((s,a,s′) ∈ ∆ for somea∈ Σ)

if instack1(s′) then terminate (True); // Accepting run throughs′ found!

else if not flagged(s′) then dfs2(s′);
end if ;

end procedure

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-12

Actually DFS search order is needed for correctness only in the subroutine “dfs1(s)”.

(Using DFS there is vital for correctness!)

The subroutine “dfs2(s)” can actually be implemented using any search order (for example

BFS). However, doing so requires a data structure for storing the value of “flag” different

from the one described in the previous slides.

The above emptiness checking algorithm “nested depth first search” is what is implemen-

ted in the LTL model checker SPIN.

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-13

Maximal Strongly Connected Components

We define a strongly connected component C of a directed graph to be a set of nodes

C⊆ S, in which for all pairs of distinct states s,s′ ∈C it holds that: s′ can be reached from

s and s can be reached from s′.

A strongly connected component C is called maximal, if no strongly connected component

C′ ⊆ Sexists, such that C⊂C′.

A maximal strongly connected component is called non-trivial iff: (i) |C| > 1, or (ii) there

exists s∈C such that there is an edge in the graph from s back to s.

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-14

Emptiness Checking with MSCCs

Another way of checking the non-emptiness of L(A) is to compute the maximal strongly

connected components (MSCCs) of the Büchi automaton, and check whether some non-

trivial maximal strongly connected component C reachable from some initial state s∈ S0

contains an accepting state (C∩F 6= /0). If so, the language is non-empty. Otherwise, the

language is empty.

Also this emptiness checking approach can be implemented with a linear time algorithm,

e.g. by using the Tarjan’s algorithm for computing the MSCCs. (Compute the reachable

MSCCs and check whether any non-trivial MSCC contains an accepting state.)

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-15

The definition of determinism for Büchi automata is identical to the FSA case.

Unlike finite state automata, Büchi automata are not expressively complete when determ-

inistic. In other words, there are languages accepted by non-deterministic Büchi auto-

mata, which no deterministic Büchi automaton accepts. An example of such a language

is (a+b)∗bω. (A finite number of a symbols with finitely many occurrences of b symbols

between any two a’s followed by an infinite sequence of b symbols.)

Also note that LTL requires non-deterministic automata to be expressed, the language

above is effectively the same as the requirement expressed by the LTL formula ♦¤b.

c©2003 Keijo Heljanko, c©2004 Timo Latvala

Reactive Systems: Automata on Infinite Words, part II 11-16

The complementation procedure for Büchi automata is thus very different from finite state
automata, as a normal determinization construction cannot be used. In fact, we have the
following result:

Theorem 2 Let A be any (non-deterministic) Büchi automaton with n states. Then in
the worst case the smallest Büchi automaton A ′, such that L(A ′) = Σω \L(A) will have
2Ω(nlogn) states.

This blow-up is in practice much worse than the blow-up for finite state automata com-
plementation. Note that n! = O(2O(nlogn)). (For example, while 5! = 120and 25 = 32,
factorial grows much faster: 10! = 3628800, while 210 = 1024.)

There are several different ways to complement Büchi automata matching the lower
bound. However, we do not know of a publicly available implementation of those al-
gorithms.

Thankfully in (basic) model checking complementation of Büchi automata is not needed.

c©2003 Keijo Heljanko, c©2004 Timo Latvala

	Kripke Product
	Example: LTL Model Checking
	Büchi Automaton AM
	Büchi Automaton Af
	Büchi Automaton P
	Büchi Automaton P is Non-empty!
	Emptiness Checking for Büchi Automata
	Maximal Strongly Connected Components
	Emptiness Checking with MSCCs

