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Example: Operations on Automata

Consider the following automata A1 and A2, both over the alphabet Σ = {a,b}.
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Example: Union of Automata

The following automaton A is their union, in other words A = A1 ∪ A2.
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Example: Intersection of Automata
The following automaton A is their intersection, in other words A = A1 ∩ A2.
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Complementing Nondeterministic Automata

The operations we have defined so far for finite state automata have resulted in automata

whose size is polynomial in the sizes of input automata.

The most straightforward way of implementing complementation of a non-deterministic

automaton is to first determinize it, and after this to complement the corresponding deter-

ministic automaton.

Unfortunately determinization yields an exponential blow up. (A worst-case exponential

blow-up is in fact unavoidable in complementing non-deterministic automata.)
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Determinization of finite state automata can be done as follows:

Definition 1 Let A1 = (Σ,S1,S
0
1,∆1,F1) be a non-deterministic automaton. We define a

deterministic automaton A = (Σ,S,S0,∆,F), where

• S= 2S1, the set of all sets of states in S1,

• S0 = {S0
1}, a single state containing all the initial states of A1,

• (Q,a,Q′) ∈ ∆ iff

Q∈ S,a∈ Σ, and Q′ = {s′ ∈ S1 | there is (s,a,s′) ∈ ∆1 such that s∈Q}; and

• F = {s∈S|S∩ F1 6= /0}, those states in Swhich contain at least one accepting state

of A1.
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The intuition behind the construction is that it combines all possible runs on given input

word into one run, where we keep track of all the possible states we can currently be in

by using the “state label”. (The automaton state consists of the set of states in which the

automaton can be in after reading the input so far.)

We denote the construction of the previous slide with A = det(A1) Note that L(A) =
L(A1), and A is deterministic. If A1 has n states, the automaton A will contain 2n states.

Note also that the determinization construction gives an automaton A with a completely

specified transition relation as output. Thus to complement an automaton A1, we can use

the procedure A = det(A1), A ′ = A , and we get that

L(A ′) = Σ∗ \L(A) = Σ∗ \L(A1) = L(A1).

To optimize the construction slightly, usually only those states of A which are reachable

from the initial state are added to set of states set of A .
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Example: Determinization of Automata
We want to determinize the following automaton A1 over the alphabet Σ = {a,b}.
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Example: Determinization Result
As a result we obtain the automaton A below. (Only the reachable part shown!)
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Example: Complementation
Let’s call the result of the previous slide A1, and complement the result. We get:

b

a

A

{q0}

a

b

a

b
{q3,q4}

a

a

b b

/0

{q2}

{q1,q2,q3,q4}

{q4}

a,b

c©2003 Keijo Heljanko, c©2004 Timo Latvala



Reactive Systems: Finite State Automata, part II 2-10

We have now shown that finite state automata are closed under all Boolean operations,

as with ∪, ∩, and A all other Boolean operations can be done.

All operations except for determinization (which is also used to complement nondetermin-

istic automata!) created a polynomial size output in the size of the inputs.

Note, however, that even if A1,A2,A3,A4 have k states each, the automaton

A ′4 = A1 ∩ A2 ∩ A3 ∩ A4 (alternatively denoted by A ′4 = A1×A2×A3×A4) can have

k4 states, and thus in the general A ′i will have ki states. Therefore even if if a single use

of ∩ is polynomial, repeated applications often will result in a state explosion problem.

In fact, the use of × as demonstrated above (or some slight variation of the definition)

is the main way of composing a reactive system out of its components when using an

automata based modeling formalism.
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Checking Safety Properties with FSA

A safety property can be informally described as a property stating that “nothing bad
should happen”. (We will come back to the formal definition later in the course.)

When checking safety properties, the behavior of a system can be described by a finite
state automaton, call it A .

Also in most cases the allowed behaviors of the system can be specified by another
automaton, call it the specification automaton S .

Assume that the specification specifies all legal behaviors of the system. In other words
a system is incorrect if it has some behavior (accepts a word) that is not accepted by
the specification. In other words a correct implementation has less behavior than the
specification, or more formally L(A)⊆ L(S).
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Checking whether L(A) ⊆ L(S) holds is referred to as performing a language contain-

ment check.

By using simple automata theoretic constructions given above, we can now check whether

the system meets its specification. Namely, we can create a product automaton

P = A ∩S and then check whether L(P ) = /0.

In case the safety property does not hold, the automaton P has a counterexample run rp

which accepts a word w, such that w∈ L(A) but w 6∈ L(S).

By projecting rp on the states of A one can obtain a run of ra of the system (a sequence

of states of the system) which violates the specification S .

c©2003 Keijo Heljanko, c©2004 Timo Latvala



Reactive Systems: Finite State Automata, part II 2-13

Example: Safety Property
Consider the problem of mutual exclusion. Assume that the alphabet is Σ = {e1,e2, l1, l2},
where e1 means that process 1 enters the critical section and l1 means that process 1
leaves the critical section. (For simplicity we assume these are the only actions possible
in the system.) The automaton S specifying correct mutual exclusion property is the
following.
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Example: Safety Property

If we want to check whether L(A)⊆ L(S), we need to complement S . We get the follow-

ing:
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If we now have an automaton A modeling the behavior of the mutex system, we can

create the product automaton P = A ∩ det(S). Now the mutex system is correct iff the

automaton P does not accept any word.
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Example2: Safety Property
Assume we are testing a data-communications protocol for message duplication. We

have already added as a data-source a sender, which sends an arbitrarily long sequence

of message m0 messages, followed by a single m1, followed by an arbitrary number of

m2 messages. If the data communication protocol does not look at its payload, we can

see if the protocol duplicates messages by checking whether the data stream read by the

receiver is within the following language over the alphabet Σ = {m0,m1,m2}:
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