Reactive Systems: Safety, Liveness, and Fairness
Timo Latvala

March 7, 2004

Reactive Systems: Safety, Liveness, and Fairness 14-1

Safety

Safety properties are a very useful subclass of specifications. Basically safety properties
are those properties, where a violation of the property can always be detected after only
a finite execution of the system.

Thus model checking of safety properties requires only reasoning about finite executions
(basically the history of the system execution so far). This makes algorithmics for model
checking easier, as emptiness checking reduces basically to the reachability of a final
State.

Violations of safety properties can also be detected with traditional testing and simulation
methods.

Violations of safety properties can also often be monitored during implementation runtime.
This is often called “runtime” verification.
(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-2

Bad Prefixes

Let's now formalize this notion of safety. Consider a language L consisting a set of of
infinite words over alphabet 2, i.e., L C Z%.

A finite word X € Z* is a bad prefix for L iff for all infinite words y € =% it holds that the
concatenation X-Yis not in L. In other words, no matter how X is extended, we will always

get words not in L.

You can think of the bad prefix X as a finite counterexample showing that the safety prop-
erty is violated.

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-3

Safety Languages

A language L C 3% is a safety language (also called a safety property) iff every infinite
word not in L has a finite bad prefix.

l.e., L is a safety language iff Yw € 2%\ L there is X € Z* such that: (i) w = X- z for some
zc 39 and (i) for all y € X% it holds that X-y & L.

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-4

Safety and LTL

There is a subset of LTL properties, which is called “syntactic LTL safety formulas”. Basi-
cally this subset contains all the formulas built using the following syntax:

Given the set AP, an syntactic safety LTL formula is:
e true, false pfor pe AP, or =pfor p € AP,

o f1V Ty, Ty A fo, Xfq, LIf1, or f1R f, where f{ and f> are syntactic safety LTL
formulas

Note that negation can only be applied to atomic propositions, thus until properties can
not be expressed in the subset.

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-5

Automata for Syntactic LTL Safety Formulas
For syntactic safety formulas we have the following theorem:

Theorem 1 Given a syntactic safety LTL formula f, there is a nondeterministic finite
automaton A4+ (on finite words), which has at most 20(/11) states, accepts only bad
prefixes for L(f), and for each word w € £(—f), the automaton accepts some finite word
X, such that w = X- z for some infinite word z.

The procedure to obtain that automaton is similar in spirit to LTL to Buchi conversion, but
the details differ!

If you need this automaton, take a look at the “scheck” tool by T. Latvala (http://www.
tcs.hut.fi/~timo/scheck).

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

http://www.tcs.hut.fi/~timo/scheck
http://www.tcs.hut.fi/~timo/scheck

Reactive Systems: Safety, Liveness, and Fairness 14-6

Automata for General LTL Safety Formulas

Note that there are a lot of other LTL formulas which are safety, but are not in the syntactic
safety subset. For example any formula which is equivalent to falseis a safety formula!
Example: OUIp A OLI—p.

If we get outside syntactic safety subset, things get a quite bit more messy:

Theorem 2 Given a safety LTL formula f, there is a deterministic finite automaton 4

f
(on finite words), which has at most 220(’) states, accepts only bad prefixes for L(f),

and for each word w € L(—T), the automaton accepts the shortest finite word X, such
that w = X- Z for some infinite word z

. 2Q(v/1f]) . .
There is also a 2 lower bound. Because of the blow-up, handling non-syntactic
safety formulas can actually be made more efficiently by using Blchi automata instead!

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-7

Liveness

There are several different definitions of liveness in the literature. We define liveness as
follows:

A language L C 2% is a liveness language (also called a liveness property) iff L is not a
safety language.

To detect violations of liveness properties thus need to consider (at least some) infinite
executions of the system.

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-8

Fairness

Sometimes we want to use fairness assumptions on the environment out system works
in.

For example, we might want to assume that a scheduler never ignores some process
forever. It could be that a system can only guarantee progress if such a scheduler is
present. However, optimally we would like our program to work even if the scheduler is

very unfair. To model “the worst possible scheduler”, we might add fairness conditions
implying that each process is scheduled infinitely often.

Another example of fairness assumptions is that of a lossy message channel, which will
for each message “m;” guarantee the following: If message “m;” is sent infinitely often,
then the same message “nmy” is also received infinitely often.

Note that fairness assumptions are only needed to prove liveness properties! Any safety
property can be verified without assuming fairness.

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-9

Model Checking Under Fairness

In model checking under fairness, some fairness assumption is assumed from a system,
such as that the used scheduler will schedule all processes infinitely often. This can often
be captured by an LTL formula of the form

(fairnesg — (property).

One should be careful when specifying the formula for fairness, because it is easy to
make a mistake and to specify a fairness assumption, which is equivalent to false

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-10

Two very commonly used forms of fairness are weak fairness and strong fairness.

Weak fairness can be captured by using the LTL formula
A (0D0p — 00,
1<i<n
which is actually equivalent to

A (©O(=p1va).

1<i<n

This formula can be translated into a one state (generalized) Blichi automaton, provided
that the automaton class used has acceptance sets on arcs instead being on the states
(as in the standard definition used in this course).

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-11

Most LTL to Biichi translators will (unfortunately) generate an exponential Blichi automa-
ton when confronted with a weak fairness formula.

Thus it is advisable to see whether the LTL model checker you use handles weak fairness
constraints in an efficient manner. Sometimes using an a better LTL to Bichi conver-
sion tool can significantly improve the performance of model checking LTL under weak
fairness.

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-12

The strong fairness is characterized by the LTL formula

A @0p — 00a).

1<i<n

Unfortunately, this cannot be translated into a one state Blichi automaton, and the expo-
nential blowup is unavoidable.

It can, however, be translated into one state automaton of a class called a Streett automa-
ton (again provided that the acceptance conditions are on edges).

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-13

The acceptance component of a (state acceptance set based) Streett automaton is
Q ={(Lq,Uq),(L2,Us),...,(Ln,Un)}. Arunr of the Streett automaton A4 is accepting iff

A (nf(r) NLj =0 v inf(r) NU; # 0).
=1

It is easy to see that the acceptance component is basically a strong fairness formula.

Generalized Blichi automata can be emulated by Streett automata by setting Lj = S and
U; = F for all I. However, the other direction involves an exponential blowup.

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

Reactive Systems: Safety, Liveness, and Fairness 14-14

Upgrading your LTL to Buchi translator to a decent one might help some when dealing
with model checking under strong fairness, but the resulting Blichi automata will always
be exponential in the number of fairness constraints.

The emptiness checking algorithms for Streett automata are more complex than those of
Blchi automata. They are, however, still polynomial.

Thus if you need to model check under many strong fairness constraints, using a model
checker employing Streett automata is advisable.

(Use e.g., the Petri net model checker of the Maria tool, due to T. Latvala and K. Heljanko.)

(©)2003 Keijo Heljanko, (€)2004 Timo Latvala

	Safety
	Bad Prefixes
	Safety Languages
	Safety and LTL
	Automata for Syntactic LTL Safety Formulas
	Automata for General LTL Safety Formulas
	Liveness
	Fairness
	Model Checking Under Fairness

