Spring 2004

T-79.186 Reactive Systems Home Exercise 4 Deadline 17.3 16.15

Return your answers by email (Postscript or PDF) to Timo.Latvala@hut.fi, or on paper to the lecture. Remember to include your name and student number.

For this home exercise round use the automata definition used in the lecture slides.

- 1.) For each LTL formula f_i below construct a Büchi automaton \mathcal{A}_i that accepts the language $\{w \in (2^{AP_i})^{\omega} \mid w \models f_i\}$. In other words, the language contains exactly the infinite words which are models of the formula.
 - (a) $AP_a = \{p\}, f_a = \Box \Diamond p.$
 - (b) $AP_b = \{p\}, f_b = \Diamond \Box \neg p.$
 - (c) $AP_c = \{p, q\}, f_c = p\mathbf{U}q.$
 - (d) $AP_d = \{p, q\}, f_d = (\Diamond \Box p) \Rightarrow (\Diamond \Box q).$
 - (e) $AP_e = \{p\}, f_e = XXp.$
 - (f) $AP_f = \{p, q\}, f_g = p\mathbf{R}q.$
- 2) Given $\Sigma = \{a, b\}$, consider the following two Büchi automata.

Figure 2: \mathcal{A}_2

- (a) Is it true that $\mathcal{L}(\mathcal{A}_1) = \emptyset$?
- (b) Does automaton \mathcal{A}_1 accept the infinite string $(a)^{\omega}$?
- (c) Does automaton \mathcal{A}_1 accept the infinite string $a(b)^{\omega}$?
- (d) Does automaton \mathcal{A}_2 accept the infinite string $(abb)^{\omega}$?
- (e) Construct the product automaton $\mathcal{A}_e = \mathcal{A}_1 \times \mathcal{A}_2$.
- (d) Is it true that $\mathcal{L}(\mathcal{A}_e) = \emptyset$?

Remember to justify your answer. Answering only yes/no or true/false will get you no points!