1.) (a) Given atomic propositions \(TRY0\) and \(CR0\), create an automaton \(S_1\), which accepts all (finite) sequences of valuations such that if \(CR0\) holds at some index, then \(TRY0\) has held at some earlier index.

(b) Given the atomics propositions \(P, Q\) and \(R\), create an automaton \(S_2\), which accepts all (finite) sequences of valuations such that \(P\) precedes \(Q\) before \(R\). Tip: \(R\) and \(Q\) do not have to become true at any point.

2) Express the following properties in LTL. (First define the atomic propositions and their meaning.)

(a) If message “m1” is sent infinitely many times by eh sender, then the message “m1” is received infinitely often by the receiver.

(b) Only finitely many messages are lost by the data channel “d1”.

(c) Always when process “p1” is in the critical section, it will go to non-critical in a finite amount of time steps.

(d) If a message “m2” is received by the receiver, then the message “m2” was sent before (or at the same time moment) by the sender.

(e) If an addition is fed to a pipelined ALU unit, then the result is ready four time units later (use the \(X\)-operator to denote one time unit).

3) For each item below, give a Kripke structure which satisfies (in the initial state) the \(CTL^*\) formula (check the semantics from Berard et al, page 34) in question. Remember that in a Kripke structure each state has at least one successor.

(a) \(EF(p \land (EFq \land AX\neg q))\)

(b) \((EXEG(p)) \land (EX(AF\neg p)))\)

(c) \(\neg AGF(p)\)

(d) \(A(GF(p) \Rightarrow GF(q))\)