Return your answers by email to Timo.Latvala@hut.fi, or on paper to the lecture.

For this home exercise round use the definition of automata as given by Chapter 1 of the book: Bérard et al: Systems and Software Verification.

1.) (a) Give an automata description A_3 (without using variables) for a modulo 3 counter, which has the following actions: (i) dec decreases the value of the counter by one (mod 3), and (ii) inc2 increases the value of the counter by two (mod 3). In the initial state of the automaton the value of the counter should be 0.

(b) Give another automaton A_4, which is a modulo 4 counter, and also has the actions dec and inc2.

(c) Compute the synchronised product automaton $P = A_3 \times A_4$ using the synchronisation set $\text{Sync} = \{(\text{dec}, \text{inc2}), (\text{inc2}, \text{dec})\}$.

2) (a) In the book (Bérard et al., pages 21–23) an elevator system is described that is a synchronised product of five automata (3 doors, a cabin, and a controller). Give a partial execution of P, which ends in any state where the controller is in the state free2.

Note that the book has the following off-by-one errors in the definition of the set Sync on page 23: the numbering of the doors should be from 0 to 2 instead from 1 to 3 as in the (faulty) definition of Sync in the book.

(b) Give the set of reachable states of Peterson’s MUTEX-algorithm (Bérard et al., pages 25-26).