T-79.186 Reactive Systems
Spring 2003, Lecture 9

Keijo Heljanko

February 28, 2003
8.4 Model Checking Under Fairness

In model checking under fairness, some fairness assumption is assumed from a system, such as that the used scheduler will schedule all processes infinitely often. This can often be captured by an LTL formula of the form

$$(fairness) \rightarrow (property).$$

One should be careful when specifying the formula for fairness, because it is easy to make a mistake and to specify a fairness assumption, which is equivalent to false.
Two very commonly used forms of fairness are weak fairness and strong fairness.

Weak fairness can be captured by using the LTL formula

\[\bigwedge_{1 \leq i \leq n} (\Diamond \Box p_i \rightarrow \Box \Diamond q_i) \]

which is actually equivalent to

\[\bigwedge_{1 \leq i \leq n} (\Box \Diamond (\neg p_1 \lor q_i)) \]

This formula can be translated into a one state (generalized) Büchi automaton, provided that the automaton class used has acceptance sets on arcs instead being on the states (as in the standard definition used in this course).

Most LTL to Büchi translators will (unfortunately) generate an exponential Büchi automaton when confronted with a weak fairness formula.

Thus it is advisable to see whether the model checker you use handles weak fairness constraints in an efficient manner.
The strong fairness is characterized by the LTL formula

$$\bigwedge_{1 \leq i \leq n} (\square \Diamond p_i \rightarrow \square \Diamond q_i).$$

Unfortunately, this cannot be translated into a one state Büchi automaton, and the exponential blowup is unavoidable.

It can, however, be translated into one state automaton of a class called a Streett automaton (again provided that the acceptance conditions are on edges).
The acceptance component of a (state acceptance set based) Streett automaton is
Ω = \{(L_1, U_1), (L_2, U_2), \ldots, (L_n, U_n)\}. A run r of the Streett automaton A is
accepting iff
\[
\bigwedge_{i=1}^{n} (\text{inf}(r) \cap L_i = \emptyset \lor \text{inf}(r) \cap U_i \neq \emptyset).
\]

It is easy to see that the acceptance component is basically a strong fairness formula.

Generalized Büchi automata can be emulated by Streett automata by setting \(L_i = S\),
and \(U_i = F_i\) for all \(i\). However, the other direction involves an exponential blowup.
The emptiness checking algorithms for Streett automata are more complex than those of Büchi automata. They are, however, still polynomial. Thus if you need to model check under many strong fairness constraints, using a model checker employing Streett automata is advisable. (Use e.g., the model checker of the Maria tool, due to T. Latvala and K. Heljanko.)
9 Model Checking \(CTL\)

There is a straightforward model checker for \(CTL\), whose running time is linear in both the size of the Kripke structure and the size of the formula.

We will now present a \(CTL\) model checking algorithm due to Emerson, Clarke, and Sistla.
In our presentation we use AU and EU as single subformulas. Also, we will only present AX and \land, as EX and \lor can be obtained from the using negation.

For convenience we assume that the subformulas are numbered in an order, where $left(f)$ and $right(f)$ have smaller indexes than f.

The algorithm uses one bit-array of size $|S|$ called “label” for each subformula to store the truth values of different subformulas.

One bit-array of size $|S|$ called “marked” is also used for internal bookkeeping.

This algorithm uses both successor and predecessor lists of a state in the Kripke structure.

For an on-the-fly implementation another (more complex) algorithm is needed (see e.g., Master’s Thesis by K. Heljanko for an overview of on-the-fly CTL model checking algorithms).
Algorithm 1 Main loop of a CTL model checker.

procedure global_model_checker(f)
 for $i := 1$ to length(f) do
 foreach $s \in S$ do
 reset_label(s, i); // Init formula i to false
 od
 label_graph(i); // Evaluate the formula f_i in all states
 od
end procedure
Algorithm 2 Choose processing subroutine based on formula type

procedure label_graph(i)
 ftype := formula_type(f_i);
 if ftype = atomic proposition then
 atomic(i);
 elseif ftype = NOT then
 negation(i);
 elseif ftype = AND then
 conjunction(i);
 elseif ftype = AX then
 ax(i);
 elseif ftype = AU then
 au(i);
 elseif ftype = EU then
 eu(i);
 endif
end procedure
Algorithm 3 Process atomic proposition

procedure atomic(i)
 foreach s ∈ S do
 if evaluate_proposition(s, i) then
 add_label(s, i);
 endif
 od
end procedure

Algorithm 4 Process negation

procedure negation(i)
 foreach s ∈ S do
 if ¬labeled(s, left(i)) then
 add_label(s, i);
 endif
 od
end procedure
Algorithm 5 Process conjunction

procedure conjunction(i)
 foreach s ∈ S do
 if labeled(s, left(i)) ∧ labeled(s, right(i)) then
 add_label(s, i);
 endif
 od
end procedure
Algorithm 6 Process universal next-state formula

procedure ax(i)
 foreach s \in S do
 add_label(s, i);
 foreach t \in successors(s) do
 if \neg labeled(t, left(i)) then
 reset_label(s, i);
 break;
 endif
 od
 od
end procedure
Algorithm 7 Process universal until formula

procedure au(i)
 foreach s ∈ S do
 reset_marked(s);
 od
 foreach s ∈ S do
 if ¬marked(s) then
 check_au(i, s);
 endif
 od
end procedure
Algorithm 8 Process universal until formula for state s

procedure check_au(i, s)
 if marked(s) then
 if labeled(s, i) then
 return true;
 else
 return false;
 endif
 endif
endif
set_marked(s);
if labeled(s, right(i)) then
 add_label(s, i);
 return true;
elsif ¬labeled(s, left(i)) then
 return false;
endif
foreach t ∈ successors(s) do
 if ¬check_au(i, t) then
 return false;
 endif
od
add_label(s, i);
return true;
end procedure
Algorithm 9 Process existential until formula

procedure $\text{eu}(i)$

$$\text{foreach } s \in S \text{ do}$$

$$\text{reset}_{-}\text{marked}(s);$$

$$\text{od}$$

$$\text{foreach } s \in S \text{ do}$$

$$\text{if } \neg\text{marked}(s) \text{ then}$$

$$\text{check}_{-}\text{eu}(i, s);$$

$$\text{endif}$$

$$\text{od}$$

end procedure
Algorithm 10 Process existential until formula for state s

procedure check_eu(i, s)
 if labeled(s, right(i)) then
 add_label(s, i);
 label_predecessors(i, s);
 endif
end procedure
Algorithm 11 Propagate label change to predecessor states

procedure label_predecessors(i, s)
 set_marked(s);
 foreach t ∈ predecessors(s) do // Note the use of predecessor relation!
 if ¬marked(t) ∧ labeled(t, left(i)) then
 add_label(t, i);
 label_predecessors(i, t);
 endif
 od
end procedure
10 Model checking CTL^*

Model checking CTL^* is quite straightforward once we have a global model checker for LTL. (An algorithm which evaluates the LTL formula in all states of the system.)

Assume we have an (existential) LTL model checker, which (in CTL^* notation) returns the set of states $\{ s \in S \mid M, s \models Ef_1 \}$, where f_1 is an LTL formula.

We call this algorithm “$ECheckLTL()$”.

We will now show that model checking CTL^* can be made with an algorithm of essentially the same complexity as the complexity of “$ECheckLTL()$” by using the following procedure.
The recursive evaluation procedure “CheckCTL*(f)” goes as follows:

1. Convert the \(CTL^* \) formula \(f \) into negation normal form. (Push negations in).

2. If \(f \) is of the form \(Ef_1 \), where \(f_1 \) is an \(LTL \) formula, return \(E\text{CheckLTL}(f_1) \).

3. If \(f \) is of the form \(Af_1 \), return \((S \setminus \text{CheckCTL}^*(E\neg f_1)) \).

4. Let \(g_1, g_2, \ldots, g_n \) be the maximal subformulas of \(f \), which are not \(LTL \) formulas. For each \(g_i \), create a new atomic proposition \(h_i \), and calculate the valuation of it by calling \(\text{CheckCTL}^*(g_i) \). Furthermore, replace each subformula \(g_i \) in the formula \(f \) by the corresponding atomic proposition \(h_i \).

5. return \(E\text{CheckLTL}(f) \).

(After the step 4. above, \(f \) is guaranteed to be an \(LTL \) formula.)

Now \(M, s^0 \models f \) iff \(s^0 \in \text{CheckCTL}^*(f) \).
To implement the global LTL model checking procedure “$ECheckLTL(f_1)$”, one can for example call a standard (local) LTL model checking procedure with the formula $\neg f_1$ and negate the result. Calling this procedure $|S|$ times, each time with a new initial state, will calculate the required set of states.

However, doing so will not be very efficient, as a lot of redundant is done across the different calls. (The global model checking algorithm is now quadratic in the number of states in the Kripke structure, instead of being linear.)

Using a modified version of the nested depth first search will get rid of most of the overhead in practice, but the quadratic worst case behavior remains.

By using an MSCC based emptiness checking algorithm (e.g., modified Tarjan’s MSCC algorithm) this quadratic overhead can be eliminated.
Note, however, that using CTL^* instead of LTL has also disadvantages. For example, partial order reduction methods for CTL^* are less effective than for LTL. Also, the use of abstraction methods is more cumbersome for CTL^*.

Thus even though model checking as such is not harder for CTL^*, practical model checking use might still prefer LTL over it.