
Tik-79.186 Reactive Systems 90

'

&

$

%

T-79.186 Reactive Systems
Spring 2003, Lecture 9

Keijo Heljanko

February 28, 2003

Keijo Heljanko

Tik-79.186 Reactive Systems 91

'

&

$

%

8.4 Model Checking Under Fairness

In model checking under fairness, some fairness assumption is assumed from a system,

such as that the used scheduler will schedule all processes infinitely often. This can

often be captured by an LTL formula of the form

(fairness) → (property).

One should be careful when specifying the formula for fairness, because it is easy to

make a mistake and to specify a fairness assumption, which is equivalent to false.

Keijo Heljanko

Tik-79.186 Reactive Systems 92

'

&

$

%

Two very commonly used forms of fairness are weak fairness and strong fairness.

Weak fairness can be captured by using the LTL formula
∧

1≤i≤n

(32pi → 23qi),

which is actually equivalent to
∧

1≤i≤n

(23(¬p1 ∨ qi)).

This formula can be translated into a one state (generalized) Büchi automaton,

provided that the automaton class used has acceptance sets on arcs instead being on

the states (as in the standard definition used in this course).

Most LTL to Büchi translators will (unfortunately) generate an exponential Büchi

automaton when confronted with a weak fairness formula.

Thus it is advisable to see whether the model checker you use handles weak fairness

constraints in an efficient manner.

Keijo Heljanko

Tik-79.186 Reactive Systems 93

'

&

$

%

The strong fairness is characterized by the LTL formula
∧

1≤i≤n

(23pi → 23qi).

Unfortunately, this cannot be translated into a one state Büchi automaton, and the

exponential blowup is unavoidable.

It can, however, be translated into one state automaton of a class called a Streett

automaton (again provided that the acceptance conditions are on edges).

Keijo Heljanko

Tik-79.186 Reactive Systems 94

'

&

$

%

The acceptance component of a (state acceptance set based) Streett automaton is

Ω = {(L1, U1), (L2, U2), . . . , (Ln, Un)}. A run r of the Streett automaton A is

accepting iff
n∧

i=1

(inf (r) ∩ Li = ∅ ∨ inf (r) ∩ Ui 6= ∅).

It is easy to see that the acceptance component is basically a strong fairness formula.

Generalized Büchi automata can be emulated by Streett automata by setting Li = S,

and Ui = Fi for all i. However, the other direction involves an exponential blowup.

Keijo Heljanko

Tik-79.186 Reactive Systems 95

'

&

$

%

The emptiness checking algorithms for Streett automata are more complex than those

of Büchi automata. They are, however, still polynomial. Thus if you need to model

check under many strong fairness constraints, using a model checker employing Streett

automata is advisable. (Use e.g., the model checker of the Maria tool, due to

T. Latvala and K. Heljanko.)

Keijo Heljanko

Tik-79.186 Reactive Systems 96

'

&

$

%

9 Model Checking CTL

There is a straightforward model checker for CTL, whose running time is linear in both

the size of the Kripke structure and the size of the formula.

We will now present a CTL model checking algorithm due to Emerson, Clarke, and

Sistla.

Keijo Heljanko

Tik-79.186 Reactive Systems 97

'

&

$

%

In our presentation we use AU and EU as single subformulas. Also, we will only

present AX and ∧, as EX and ∨ can be obtained from the using negation.

For convenience we assume that the subformulas are numbered in an order, where

left(f) and right(f) have smaller indexes than f .

The algorithm uses one bit-array of size |S| called “label” for each subformula to store

the truth values of different subformulas.

One bit-array of size |S| called “marked” is also used for internal bookkeeping.

This algorithm uses both successor and predecessor lists of a state in the Kripke

structure.

For an on-the-fly implementation another (more complex) algorithm is needed (see e.g.,

Master’s Thesis by K. Heljanko for an overview of on-the-fly CTL model checking

algorithms).

Keijo Heljanko

Tik-79.186 Reactive Systems 98

'

&

$

%

Algorithm 1 Main loop of a CTL model checker.

procedure global model checker(f)

for i := 1 to length(f) do

foreach s ∈ S do

reset label(s, i); // Init formula i to false
od

label graph(i); // Evaluate the formula fi in all states

od

end procedure

Keijo Heljanko

Tik-79.186 Reactive Systems 99

'

&

$

%

Algorithm 2 Choose processing subroutine based on formula type

procedure label graph(i)

ftype := formula type(fi);

if ftype = atomic proposition then

atomic(i);

elsif ftype = NOT then

negation(i);

elsif ftype = AND then

conjunction(i);

elsif ftype = AX then

ax(i);

elsif ftype = AU then

au(i);

elsif ftype = EU then

eu(i);

endif

end procedure

Keijo Heljanko

Tik-79.186 Reactive Systems 100

'

&

$

%

Algorithm 3 Process atomic proposition

procedure atomic(i)

foreach s ∈ S do

if evaluate proposition(s, i) then

add label(s,i);

endif

od

end procedure

Algorithm 4 Process negation

procedure negation(i)

foreach s ∈ S do

if ¬labeled(s, left(i)) then

add label(s,i);

endif

od

end procedure

Keijo Heljanko

Tik-79.186 Reactive Systems 101

'

&

$

%

Algorithm 5 Process conjunction

procedure conjunction(i)

foreach s ∈ S do

if labeled(s, left(i)) ∧ labeled(s, right(i)) then

add label(s, i);

endif

od

end procedure

Keijo Heljanko

Tik-79.186 Reactive Systems 102

'

&

$

%

Algorithm 6 Process universal next-state formula

procedure ax(i)

foreach s ∈ S do

add label(s, i);

foreach t ∈ successors(s) do

if ¬labeled(t, left(i)) then

reset label(s, i);

break;

endif

od

od

end procedure

Keijo Heljanko

Tik-79.186 Reactive Systems 103

'

&

$

%

Algorithm 7 Process universal until formula

procedure au(i)

foreach s ∈ S do

reset marked(s);

od

foreach s ∈ S do

if ¬marked(s) then

check au(i, s);

endif

od

end procedure

Keijo Heljanko

Tik-79.186 Reactive Systems 104

'

&

$

%

Algorithm 8 Process universal until formula for state s

procedure check au(i, s)

if marked(s) then

if labeled(s, i) then

return true;

else

return false;

endif

endif

Keijo Heljanko

Tik-79.186 Reactive Systems 105

'

&

$

%

set marked(s);

if labeled(s, right(i)) then

add label(s, i);

return true;

elsif ¬labeled(s, left(i)) then

return false;

endif

foreach t ∈ successors(s) do

if ¬check au(i, t) then

return false;

endif

od

add label(s, i);

return true;

end procedure

Keijo Heljanko

Tik-79.186 Reactive Systems 106

'

&

$

%

Algorithm 9 Process existential until formula

procedure eu(i)

foreach s ∈ S do

reset marked(s);

od

foreach s ∈ S do

if ¬marked(s) then

check eu(i, s);

endif

od

end procedure

Keijo Heljanko

Tik-79.186 Reactive Systems 107

'

&

$

%

Algorithm 10 Process existential until formula for state s

procedure check eu(i, s)

if labeled(s, right(i)) then

add label(s, i);

label predecessors(i, s);

endif

end procedure

Keijo Heljanko

Tik-79.186 Reactive Systems 108

'

&

$

%

Algorithm 11 Propagate label change to predecessor states

procedure label predecessors(i, s)

set marked(s);

foreach t ∈ predecessors(s) do // Note the use of predecessor relation!

if ¬marked(t) ∧ labeled(t, left(i)) then

add label(t, i);

label predecessors(i, t);

endif

od

end procedure

Keijo Heljanko

Tik-79.186 Reactive Systems 109

'

&

$

%

10 Model checking CTL∗

Model checking CTL∗ is quite straightforward once we have a global model checker for

LTL. (An algorithm which evaluates the LTL formula in all states of the system.)

Assume we have an (existential) LTL model checker, which (in CTL∗ notation)

returns the set of states {s ∈ S |M, s |= Ef1}, where f1 is an LTL formula.

We call this algorithm “ECheckLTL()”.

We will now show that model checking CTL∗ can be made with an algorithm of

essentially the same complexity as the complexity of “ECheckLTL()” by using the

following procedure.

Keijo Heljanko

Tik-79.186 Reactive Systems 110

'

&

$

%

The recursive evaluation procedure “CheckCTL∗(f)” goes as follows:

1. Convert the CTL∗ formula f into negation normal form. (Push negations in).

2. If f is of the form Ef1, where f1 is and LTL formula, return ECheckLTL(f1).

3. If f is of the form Af1, return (S \ CheckCTL∗(E¬f1)).

4. Let g1, g2, . . . , gn be the maximal subformulas of f , which are not LTL formulas.

For each gi, create a new atomic proposition hi, and calculate the valuation of it

by calling CheckCTL∗(gi). Furthermore, replace each subformula gi in the

formula f by the corresponding atomic proposition hi.

5. return ECheckLTL(f).
(After the step 4. above, f is guaranteed to be an LTL formula.)

Now M, s0 |= f iff s0 ∈ CheckCTL∗(f).

Keijo Heljanko

Tik-79.186 Reactive Systems 111

'

&

$

%

To implement the global LTL model checking procedure “ECheckLTL(f1)”, one can

for example call a standard (local) LTL model checking procedure with the formula

¬f1 and negate the result. Calling this procedure |S| times, each time with a new

initial state, will calculate the required set of states.

However, doing so will not be very efficient, as a lot of redundant is done across the

different calls. (The global model checking algorithm is now quadratic in the number of

states in the Kripke structure, instead of being linear.)

Using a modified version of the nested depth first search will get rid of most of the

overhead in practice, but the quadratic worst case behavior remains.

By using an MSCC based emptiness checking algorithm (e.g., modified Tarjan’s MSCC

algorithm) this quadratic overhead can be eliminated.

Keijo Heljanko

Tik-79.186 Reactive Systems 112

'

&

$

%

Note, however, that using CTL∗ instead of LTL has also disadvantages. For example,

partial order reduction methods for CTL∗ are less effective than for LTL. Also, the

use of abstraction methods is more cumbersome for CTL∗.

Thus even though model checking as such is not harder for CTL∗, practical model

checking use might still prefer LTL over it.

Keijo Heljanko

