
Tik-79.186 Reactive Systems 81

'

&

$

%

T-79.186 Reactive Systems
Spring 2003, Lecture 8

Keijo Heljanko

February 25, 2003

Keijo Heljanko

Tik-79.186 Reactive Systems 82

'

&

$

%

The algorithm creates a graph stored in the set “nodes”. The nodes (states) of this

graph are labelled with formulas. Actually, from now on we are only interested in the

formulas stored in the set “Old”.

It is now easy to obtain a Büchi automaton from this graph. (Using a slightly different

Büchi automata definition than what has been used in this course so far.)

First of all a special initial state “init” is created. This state is the only state in S0.

All nodes “p ∈ nodes” together with the initial state “init” are the states S of the

Büchi automaton.

Keijo Heljanko

Tik-79.186 Reactive Systems 83

'

&

$

%

The labelling of the arcs of the Büchi automaton can be derived from the formula

labelling of states.

Namely, a state is compatible with a set of valuations as described below.

A valuation v ∈ 2AP is compatible with the label of a node s iff:

• ∀p ∈ AP : if p ∈ s.Old then p ∈ v, and

• ∀p ∈ AP : if ¬p ∈ s.Old then p 6∈ v.

There is an arc from a state s ∈ S to a state r ∈ S with a label v ∈ 2AP iff

• v is compatible with the valuation of r, and

• s ∈ r.Incoming.

Keijo Heljanko

Tik-79.186 Reactive Systems 84

'

&

$

%

The Büchi automaton class used is called generalized Büchi automata. In this class

the acceptance component consist of several acceptance sets. The basic idea is that an

accepting run should visit some accepting state from each acceptance set infinitely

often.

More formally the acceptance component F = {F1, F2, . . . , Fn}, where each Fi ⊆ S.

Now a generalized Büchi automaton A accepts a run r iff for all Fi ∈ F :

inf (r) ∩ Fi 6= ∅.

Note that in the special case F = ∅ all infinite runs of the generalized Büchi

automaton are accepting.

Keijo Heljanko

Tik-79.186 Reactive Systems 85

'

&

$

%

We will to rule out the use of case b) infinitely many times without also using case a)

infinitely many times when proving the until formula f1 U f2 ∈ sub(f). This is done by

using one acceptance set for each until formula.

Assume, that the (until) subformulas (subformulas of the form f1 U f2) are numbered

1, 2, . . . , n. Then the acceptance component F = {F1, F2, . . . , Fn}, where:

For each 1 ≤ i ≤ n the state s belongs to Fi iff

• right(fi) ∈ s.Old, or

• fi 6∈ s.Old.

These together will assure that for each until formula fi either the right hand side is

eventually proved, or that we do not have the until formula fi as our proof obligation

from state s onwards.

Note also that if there are no until formulas, F = ∅.

Keijo Heljanko

Tik-79.186 Reactive Systems 86

'

&

$

%

Many of the emptiness checking algorithms, for example the nested depth first search,

do not handle generalized Büchi automata. Thus most of the LTL to Büchi translation

algorithms make a (non-generalized) Büchi automaton A′ out of the generalized Büchi

automaton with the following procedure (which works for any generalized Büchi

automaton).

Another option is to use e.g., a MSCC based emptiness checking algorithm instead.

Keijo Heljanko

Tik-79.186 Reactive Systems 87

'

&

$

%

Definition 8.7 Let A be a generalized Büchi automaton (Σ, S, S0, ρ,F), where
F = {F1, F2, . . . , Fn}. We now define a (non-generalized) Büchi automaton A′
based on the number of sets in F as follows:

• F = ∅: A′ = (Σ, S, S0, ρ, S),

• F = {F1}: A′ = (Σ, S, S0, ρ, F1),

• F = {F1, F2, . . . , Fn}, where n ≥ 2: A′ = (Σ, S′, S0′, ρ′, F1
′), where:

– S′ = S × {1, 2, . . . , n},
– S0′ = S0 × {1},
– ρ′ is defined as follows: (s′, j) ∈ ρ′((s, i), a) iff s′ ∈ ρ(s, a) and

((s 6∈ Fi and j = i) ∨ (s ∈ Fi and j = (imod n) + 1)), and

– F1
′ = F1 × {1}.

Now it holds that L(A′) = L(A), and A′ is never smaller than A. In fact, in the worst

case A′ has n times as many states as A, where n in the number of acceptance sets.

(This construction is essentially optimal, result due to H. Tauriainen.)

Keijo Heljanko

Tik-79.186 Reactive Systems 88

'

&

$

%

Now we can prove some worst-case bounds on the automata size based on the

presented translation algorithm.

Given an LTL formula f in negation normal form, for the generalized Büchi automaton

Af a (coarse) upper bound on the number of states it has is 1 + 2(2·|sub(f)|) states.

(There is the state “init”, plus at most as many different states as there are possible

combinations of “Old” and “Next” sets, of which there are at most 2(2·|sub(f)|).)

Theorem 8.8 Given an LTL formula f in negation normal form, the generalized
Büchi automaton Af has at most 2O(|f |) states.

Converting the generalized Büchi automaton to a non-generalized one we get (a coarse)

upper bound of |sub(f)| · (1+2(2·|sub(f)|)) states. We thus get also the following result.

Theorem 8.9 Given an LTL formula f in negation normal form, the
(non-generalized) Büchi automaton Af has at most 2O(|f |) states.

Keijo Heljanko

Tik-79.186 Reactive Systems 89

'

&

$

%

There are quite a few highly optimized freely available LTL to Büchi automata

translators available. Rolling your own can be educational, but not likely very effective

in terms of the final Büchi automaton size.

The exponential blow-up in the construction is unavoidable when translating into Büchi

automata. For example model checking the LTL formula

(strong fairness) → (property)

will exhibit this behavior, when one starts growing the value of n in

strong fairness =
∧

1≤i≤n

(23pi → 23qi).

Such fairness assumptions sometimes arise in model checking of liveness properties.

Keijo Heljanko

