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8.2 Algorithms for Büchi Automata

The following algorithm can be used to check a Büchi automaton for emptiness.

It uses a hash table to check whether a state s has already been visited by the

algorithm. A new state can be stored into this table using subroutine “hash(s)”.

For efficiency each hash table entry contains two bits of additional information, both

initialized to zero value.

To manipulate these bits, there are the following subroutines. The subroutine

“addstack1(s)” turns the first bit to one, the subroutine “removestack1(s)” clears the

first bit, and the subroutine “instack1(s)” returns “True” iff the first bit is set.

The subroutine “flag(s)” turns the second bit to one, and the subroutine “flagged(s)”

returns “True” iff the second bit is set.
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Algorithm 1 The top-level nested DFS algorithm

procedure emptiness

for all s ∈ S0 do

dfs1(s);

terminate(False); // Automaton is empty

end procedure
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Algorithm 2 The dfs1 subroutine

procedure dfs1(s)

local s′;
hash(s);

addstack1(s);

for all successors s′ of s do // (s′ ∈ ρ(s, a) for some a ∈ Σ)

if s′ is not in the hash table then dfs1(s′);
if s is an accepting state then dfs2(s); // (s ∈ F )

removestack1(s);

end procedure
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Algorithm 3 The dfs2 subroutine

procedure dfs2(s)

local s′;
flag(s);

for all successors s′ of s do // (s′ ∈ ρ(s, a) for some a ∈ Σ)

if instack1(s′) then terminate(True); // Accepting run through s′ found!

else if not flagged(s′) then dfs2(s′);
end if;

end procedure
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Actually DFS search order is needed for correctness only in the subroutine “dfs1(s)”.

(Using DFS there is vital for correctness!)

The subroutine “dfs2(s)” can actually be implemented using any search order (for

example BFS). However, doing so requires a data structure for storing the value of

“flag” different form the one described in the previous slides.

The above emptiness checking algorithm “nested depth first search” is what is

implemented in the LTL model checker Spin.

Keijo Heljanko



Tik-79.186 Reactive Systems 79

'

&

$

%

8.3 Translating LTL into Büchi Automata

There are several algorithms for translating LTL formulas into Büchi automata. In this

course we will go through a variant due to Gerth, Peled, Vardi, and Wolper.

Given an LTL formula f , it will generate a Büchi automaton Af of with at most

2O(|f |) states.

The automaton Af will accept the language {w ∈ (Σ)ω | w |= f}, where Σ = 2AP .
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Recall that if we want to model check an LTL property h, we should actually create an

automaton for f = ¬h.

Before we proceed any further, we want to put the formula f into negation normal

form (also called positive normal form), where all negations appear appear only in front

of atomic propositions.

This can be done with previously presented DeMorgan rules for temporal logic

operators. Note that putting the formula into positive normal form does not involve a

blow-up. (The length of the formula at most doubles.)

We will keep f as the name of the formula after this procedure.
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We will now define the set of formulas sub(f) to be the smallest set of LTL formulas

satisfying all of the following conditions:

• Boolean constants true, false, and the top-level formula f belong to sub(f),

• if f1 ∨ f2 ∈ sub(f), then {f1, f2} ⊆ sub(f)

• if f1 ∧ f2 ∈ sub(f), then {f1, f2} ⊆ sub(f)

• if X f1 ∈ sub(f), then {f1} ⊆ sub(f)

• if f1 U f2 ∈ sub(f), then {f1, f2} ⊆ sub(f)

• if f1 R f2 ∈ sub(f), then {f1, f2} ⊆ sub(f)

It is easy to show that |sub(f)| = O(|f |).
To ease implementation, the formulas of sub(f) can be numbered, and thus any subset

of sub(f) can be represented with a bit-array of length |sub(f)|, and thus there are at

most 2O(|f |) such subsets.
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The basic idea of the translation is based on the following properties of the semantics

of LTL, where we can choose which way to prove a particular property:

• To prove that w |= f1 ∨ f2 it suffices to either prove that

a) w |= f1, or

b) w |= f2.

• To prove that w |= f1 U f2 it suffices to either prove that

a) w |= f2, or

b) w |= f1 and w |= X(f1 U f2).

• To prove that w |= f1 R f2 it suffices to either prove that

a) w |= f1 and w |= f2 , or

b) w |= f2 and w |= X(f1 R f2).

The only restriction being, that when proving f1 U f2 the case b) can only be used

infinitely often iff the case a) is used infinitely often (we will use Büchi acceptance sets

to handle that).
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The algorithm will manipulate a data structure called node during its run.

A node is a structure with the following fields:

• ID : A unique identifier of a node (a number),

• Incoming : A list of node IDs,

• Old ⊆ sub(f),

• New ⊆ sub(f), and

• Next ⊆ sub(f).

The nodes will form a graph, where the arcs of the graph are stored in the Incoming
list of the end node of the arc for easier manipulation.

The initial node is marked by having a special node ID called init in its Incoming list.

All nodes are stored in a set (use e.g., a hash table for implementation) called nodes.

Keijo Heljanko



Tik-79.186 Reactive Systems 84

'

&

$

%

To implement the algorithm, the following functions are defined.

• Neg(true) = false,

• Neg(false) = true,

• Neg(p) = ¬p for p ∈ AP , and

• Neg(¬p) = p for p ∈ AP .
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The functions New1 (f), Next1 (f), and New2 (f) are tabulated below. They match

the recursive definitions for disjunction, until, and release:

f New1 (f ) Next1 (f ) New2 (f )

f1 ∨ f2 {f2} ∅ {f1}
f1 U f2 {f1} {f1 U f2} {f2}
f1 R f2 {f2} {f1 R f2} {f1, f2}

We are now ready to present the translation algorithm. (The presented version does

not handle X f1, but it can be easily added.)
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