
Tik-79.186 Reactive Systems 59

'

&

$

%

T-79.186 Reactive Systems
Spring 2003, Lecture 5

Keijo Heljanko

February 11, 2003

Keijo Heljanko

Tik-79.186 Reactive Systems 60

'

&

$

%

8 Automata on Infinite Words

To handle model checking of linear time temporal logic LTL it is natural to use

automata. However, these automata will accept infinite words (strings/sequences)

instead of finite words. We will later show how LTL formulas can be translated into

automata on infinite words.

These automata are very closely related to finite state automata (on finite words).

Note, however, that several of the used definitions for them are subtly different than for

finite state automata.

The most widely used class of automata on infinite strings is called Büchi automata.

We will introduce them next.

Keijo Heljanko

Tik-79.186 Reactive Systems 61

'

&

$

%

8.1 Büchi Automata

The definition of Büchi automata is identical to the definition of a finite state

automata (modulo name of the automaton class).

Definition 8.1 A (nondeterministic) Büchi automaton A is a tuple
(Σ, S, S0, ρ, F), where

• Σ is a finite alphabet,

• S is a finite set of states,

• S0 ⊆ S is set of initial states,

• ρ : S × Σ → 2S is the transition function, and

• F ⊆ S is the set of accepting states.

The meaning of the transition function ρ is as follows: t ∈ ρ(s, a) means that there is a

move from state s to state t with symbol a.

Keijo Heljanko

Tik-79.186 Reactive Systems 62

'

&

$

%

The definition of the language accepted by the automaton differs from FSAs.

A Büchi automaton A accepts a set of words L(A) ⊆ Σω called the language

accepted by A, defined as follows:

A run r of A on an infinite word a0, a1, . . . ∈ Σω is an infinite sequence s0, s1, . . . of

states in S, such that s0 ∈ S0, and si+1 ∈ ρ(si, ai) for all i ≥ 0.

Let inf (r) denote the set of states appearing infinitely often in r. The run r is

accepting iff inf (r) ∩ F 6= ∅. A word w ∈ Σω is accepted by A iff A has an accepting

run on w.

The language of L(A) ⊆ Σω is the set of infinite words accepted by the Büchi

automaton A.

A language of automaton A is said to be empty when L(A) = ∅.

Keijo Heljanko

Tik-79.186 Reactive Systems 63

'

&

$

%

It is easy to check whether L(A) 6= ∅ by using the following observation: The language

of the Büchi automaton is non-empty iff from some initial state s ∈ S0 a final state s′

can be reached, such that s′ can reach itself by a non-empty sequence of transitions.

The check above can be easily made by a linear time algorithm. (We’ll come back to

that later.)

Keijo Heljanko

Tik-79.186 Reactive Systems 64

'

&

$

%

We define a strongly connected component C of a graph to be a set of nodes C ⊆ S,

in which for all pairs of distinct states s, s′ ∈ C it holds that: s′ can be reached from s

and s can be reached from s′.

A strongly connected component C is called maximal, if no strongly connected

component C ′ ⊆ S exists, such that C ⊂ C ′.

A maximal strongly connected component is called non-trivial iff: (i) |C| > 1, or (ii)

there exists s ∈ C such that there is an edge in the graph from s back to s.

Another way of checking the non-emptiness of L(A) is to compute the maximal

strongly connected components (MSCCs) of the Büchi automaton, and check whether

some non-trivial maximal strongly connected component C reachable from some initial

state s ∈ S0 contains an accepting state (C ∩ F 6= ∅).

Also this emptiness checking approach can be implemented with a linear time

algorithm. (Compute the reachable MSCCs and check whether any non-trivial MSCC

contains an accepting state.)

Keijo Heljanko

Tik-79.186 Reactive Systems 65

'

&

$

%

We will now start defining the Boolean operators on Büchi automata:

A1 ∪ A2 and A1 ∩ A2.

We will not be able to show A in this course due to its technical complexity, but it also

exists. Thus also Büchi automata are closed under Boolean operations.

Keijo Heljanko

Tik-79.186 Reactive Systems 66

'

&

$

%

The ∪ definition for Büchi automata is identical with the FSA definition.

Definition 8.2 Let A1 = (Σ, S1, S
0
1 , ρ1, F1) and A2 = (Σ, S2, S

0
2 , ρ2, F2) be two

Büchi automata.

We define the union automaton to be A = (Σ, S, S0, ρ, F), where:

• S = S1 ∪ S2,

• S0 = S0
1 ∪ S0

2 ,

• F = F1 ∪ F2, and

• ρ(s, a) = ρ1(s, a) if s ∈ S1, and ρ2(s, a) otherwise.

Now for the union Büchi automaton A (also denoted by A1 ∪ A2) it holds that

L(A) = L(A1) ∪ L(A2).

Keijo Heljanko

Tik-79.186 Reactive Systems 67

'

&

$

%

The ∩ definition for Büchi automaton differs! (If you use either FSA or Büchi

definition in the wrong context, you will get incorrect results!)

Definition 8.3 Let A1 = (Σ, S1, S
0
1 , ρ1, F1) and A2 = (Σ, S2, S

0
2 , ρ2, F2) be Büchi

automata.

We define the product Büchi automaton to be A = (Σ, S, S0, ρ, F), where:

• S = S1 × S2 × {1, 2},
• S0 = S0

1 × S0
2 × {1},

• F = F1 × S2 × {1}, and

• For all s ∈ S1, t ∈ S2, i ∈ {1, 2}:
(a) if s ∈ F1 ∧ i = 1 : ρ((s, t, 1), a) = {(s′, t′, 2) | s′ ∈ ρ1(s, a) and t′ ∈ ρ2(t, a)}
(b) if t ∈ F2 ∧ i = 2 : ρ((s, t, 2), a) = {(s′, t′, 1) | s′ ∈ ρ1(s, a) and t′ ∈ ρ2(t, a)}
(c) if neither (a) or (b) applies:

ρ((s, t, i), a) = {(s′, t′, j) | s′ ∈ ρ1(s, a), t′ ∈ ρ2(t, a), and j = i}

Now for the product Büchi automaton A (also denoted by A1 ∩ A2 or A1 ×A2) it

holds that L(A) = L(A1) ∩ L(A2).

Keijo Heljanko

Tik-79.186 Reactive Systems 68

'

&

$

%

Actually, we were careful to define the mapping from Kripke structures to finite state

automata so that it will work also with Büchi automata:

Definition 8.4 Let M = (S, s0, R, L) be a Kripke structure over a set of atomic
propositions AP . Define a Büchi automaton AM = (Σ, SM , S0

M , ρM , FM), where

• Σ = 2AP ,

• SM = S,

• S0
M = {s0},

• for all s ∈ S, a ∈ Σ:

– if L(s) 6= a: ρM (s, a) = ∅,
– if L(s) = a: ρM (s, a) = T , where T ⊆ S is the largest set such that for all

t ∈ T it holds that (s, t) ∈ R,

, and

• FM = SM .

Keijo Heljanko

Tik-79.186 Reactive Systems 69

'

&

$

%

The Büchi automaton AM accepts exactly those infinite sequences of labellings which

correspond to infinite paths of the Kripke structure starting from the initial state s0.

We will later show how given an LTL formula f , we can create a Büchi automaton Af

which accepts exactly all the infinite sequences of valuations which satisfy f .

In model checking we actually negate the property f first, and then create a Büchi

automaton A¬f . This automaton accepts all violations of the property f .

If we have been given A¬f , it holds that M |= f iff L(AM ×A¬f) = ∅.
In other words: if no path of the Kripke structure is a model of the complement of the

specification, then all paths of the Kripke structure are models of the specification.

We’ll now show a small trick, using which AM ×A¬f can be replaced by a slightly

smaller automaton, which we call AM ⊗A¬f .

Keijo Heljanko

Tik-79.186 Reactive Systems 70

'

&

$

%

In the special case F1 = S1 we can actually use a simpler product construction, call it

A1 ⊗A2:

Definition 8.5 Let A1 = (Σ, S1, S
0
1 , ρ1, F1) and A2 = (Σ, S2, S

0
2 , ρ2, F2) be two

Büchi automata, such that for automaton A1 it holds that F1 = S1.

We define the Kripke product automaton to be A = (Σ, S, S0, ρ, F), where:

• S = S1 × S2,

• S0 = S0
1 × S0

2 ,

• F = S1 × F2, and

• ρ((s, t), a) = ρ1(s, a)× ρ2(t, a).

Now for the product Büchi automaton A (also denoted by A1 ⊗A2) it holds that

L(A) = L(A1) ∩ L(A2).

Now if A1 is a Kripke structure automaton AM , it fulfills the property above, and thus

this Kripke product construction can be used instead. (It has half as many states.)

Keijo Heljanko

Tik-79.186 Reactive Systems 71

'

&

$

%

A Büchi automaton A is deterministic if |S0| = 1 and |ρ(s, a)| ≤ 1 for all states s ∈ S

and symbols a ∈ Σ.

Unlike finite state automata, Büchi automata are not expressively complete when

deterministic. In other words, there are languages accepted by non-deterministic Büchi

automata, which no deterministic Büchi automaton accepts. An example of such a

language is (a + b)∗bω.

Also note that LTL requires non-deterministic automata to be expressed, the language

above is effectively the same as the requirement expressed by the LTL formula 32b.

Keijo Heljanko

Tik-79.186 Reactive Systems 72

'

&

$

%

The complementation procedure for Büchi automata is thus very different from finite

state automata, as a normal determinization construction cannot be used. In fact, we

have the following result:

Theorem 8.6 Let A be any (non-deterministic) Büchi automaton with n states.
Then in the worst case the smallest Büchi automaton A′, such that
L(A′) = Σω \ L(A) will have 2O(n log n) states.

This blow-up is much worse than the blow-up for finite state automata

complementation. Note that O(n!) = O(2O(n log n)).
(For example, 10! = 3628800, while 210 = 1024.)

There are several different ways to complement Büchi automata matching the lower

bound. However, we do not know of a publicly available implementation of those

algorithms.

Thankfully in (basic) model checking complementation of Büchi automata is not

needed.

Keijo Heljanko

