Tik-79.186 Reactive Systems

T-79.186 Reactive Systems
Spring 2003, Lecture 4

Keijo Heljanko

February 4, 2003

Keijo Heljanko

42

Tik-79.186 Reactive Systems

/Recall the Mutex example from previous Lectures:

_

/S0 |
L = {NCO, NC1}

(51]

L = {TRYO, NC1}

(s2 |

L = {NCO, TRY1}

(S8 |

L = {TRYO, TRY1}

(S5 |

L = {TRYO, TRY1}

(54 | (6 |
L = {CSO, NC1} L = {NCO, CS1}

(S7 |

L = {Cs0, TRY1}

(S8

L = {TRYO, CS1}

Figure 1. An Example Kripke Structure of a Mutex System

/

Keijo Heljanko

43

Tik-79.186 Reactive Systems

e

N

Some examples of LT L properties in the Mutex example Kripke structure M are:

~

M = 0-(CRO N CR1)
(both processes are never in their critical sections at the same time)

M &= O(TRY0 = ©CRO)
(always when process 0 enters the trying section, it is eventually followed by
process O entering the critical section)

M &= O(TRY0 = (TRYOU CRO))
(always when process 0 enters the trying section, it stays in the trying section until
it enters the critical section)

M #~= OCRO
(the following does not hold: process 0 will eventually enter the critical section)

M = OOCCR0O = OO CRI
(the following does not hold: if process 0 is infinitely often in the critical section,
then also process 1 is infinitely often in the critical section)

/

Keijo Heljanko

44

Tik-79.186 Reactive Systems

4)

Some additional examples:

e M EOOCRO = OOTRYO
(if process 0 is infinitely often in the critical section, then it is also infinitely often
in the trying section)

o M =CONCO = &O0-CRO
(if process 0 all the time from a certain point onwards is in the non-critical section,
then process 0 will all the time from a certain point onwards be not in the critical
section)

o M = (OOTRYO NOOTRY1) = (OCCRO NOOCRY)
(if both process 0 and 1 are infinitely often in the trying section, then both process
0 and 1 are infinitely often also in the critical section)

N /

Keijo Heljanko

45

Tik-79.186 Reactive Systems

4)

7.2 Temporal Logic CTL*

The logic C'T'L* (called “full branching time logic C'T'L*") is a branching temporal
logic, which includes all of LT L (with one syntactical difference).

An additional feature over LT L are the path quantifiers, A (“for all paths”) and E

paths starting from a state, or whether the property should hold for at least one path.

Actually, as we will see, any LT'L formula f is equivalent to the corresponding C'T'L*
formula Af.

N

(“for some path™). They can be used to express whether the property should hold for all

/

Keijo Heljanko

46

Tik-79.186 Reactive Systems

/There are two kinds of formulas in C'T'L*: state formulas and path formulas. \

A CTL* state formula g is:
e true, false, or p for p € AP.

e —g1 or g1 V g2, where g1 and g are C'T'L* state formulas.

o Afi, where fi is a CTL* path formula.

A C'T'L* path formula f is either:
e A CTL* state formula g.
o ~f1,f1V fo, X f1,f1U fa, where f1 and fo are C'T'L* path formulas.

Moreover, the top-level formula g is defined to always be a state formula in CTL*.

N /

Keijo Heljanko

Tik-79.186 Reactive Systems

E.N, and f1 sz:

A CTL* state formula g is:
e true, false, or p for p € AP.
e gy or g1 V g2, g1 N\ g2, where g1 and go are C'T'L* state formulas.
e Ffi, where f1 isa C'T'L* path formula.
o Afi, where fi is a CTL* path formula.

A CTL* path formula f is either:

e A CTL* state formula g.

o —~f1, iV fo, 1N fo, X f1, f1U fa2, f1 R f2, where f1 and fo are C'I'L* path
formulas.

All DeMorgan rules for LT'L are also valid for C'T'L*, the only new DeMorgan rule is

\J—

/As before with LT'L, we can define a non-minimal version of the syntax which includes\

/

Keijo Heljanko

48

Tik-79.186 Reactive Systems

7.2.1 Semantics of C'TL*

We give semantics to C'T'L* formulas as follows.

The notation M, s = g denotes that the C'T'L* state formula g holds in state s of the
Kripke structure.

The notation M, 7 = f denotes that the C'T'L* path formula f holds in the path 7 (of
the Kripke structure M).

Now (as also in the case of LT'L), the notation M = g is a short hand for M, s" |= g.
(A CTL* formula holds for a system M if it holds in the initial state s” of the system.)

The semantics can now be inductively defined as follows.

4)

N /

Keijo Heljanko

49

Tik-79.186 Reactive Systems

e

The semantics of C'T'L* state formulas is given by:

M, s = true

M, s [~ false

M,s = piff pe L(s) (p is an atomic proposition)

M,s = —giff not M,s =g

M,s=g1Vgs ift M,s =gy or M,s = go

M,sE=g1 Nga iff M,s =gy and M, s = g2

M, s = Ef; iff there exists a path 7 starting from s such that M, 7 &= f;

M, s = Afy iff for all paths 7 starting from s it holds that M, 7 = f;

Keijo Heljanko

50

Tik-79.186 Reactive Systems

e

~

The semantics of C'T'L* path formulas follows closely the definition for LT'L formulas,

only the first item is new.

M, |= g1 iff s is the first state of m and M, s = g1 (g1 is a state formula)
M,m = —fy iff not M, 7 = fi

M,mE=fiVv foiff Mim = fior M7 = fo

M,m= fi N foiff M,m = f1 and M, 7 = f5

M,m =X f1iff M,z = fi

M, m |= f1U fo iff there exists j > 0, such that M, 7/ |= fo and for all 0 < i < j,
M,T('i |: fl

M,m = fi R fy iff forall j >0, if for every 0 <4 < j M, " [~ f1 then M, 77 = f5

/

Keijo Heljanko

51

Tik-79.186 Reactive Systems

4)

Some examples of properies which cannot be exressed in LT L, but can be expressed in
CTL* are:

o AG(EF Restart)

(From all the states of the system it is possible to reach the restart state.)

o AG(EG—Restart)

(From all the states of the system it is possible to execute an infinite execution
without going through the restart state.)

o AF(AXa)
(In all executions of the system from the initial state eventually a state will be
reached, such that in all its possible successors a holds.)

N /

Keijo Heljanko

52

Tik-79.186 Reactive Systems

/7.3 Temporal Logic C'T'L \

The temporal logic C'T'L is the subset of C'I'L*, where the temporal operators X and
U are always immediately preceded by a path quantifier.

An example CTL* formula not expressible in CTL is A(FGp) V AG(EFp).

Often CTL formulas are actually written in the following syntax:

EX(f1), AX(f1), EF(f1), AF(f1), EG(f1), AG(f1), EU(f1, f2), and AU(f1, f2),
where the last two are different in the usual syntax, namely E(f; U f3) and A(f1 U f2).

The temporal logic C'T'L is interesting, because it has a very efficient model checking
algorithm.

Some examples of properies expressable in C'T'L follow. In the figures black color
denotes the fact that f5 holds, and gray color the fact that f; holds. In white nodes
neither of the two subformulas hold.

N /

Keijo Heljanko

53

Tik-79.186 Reactive Systems

@

34’ s5 ,/S6 s7

/“i"\“‘/"v“\“‘/"v' Ay s

Figure 2: M, S0 ‘: A(fl Ufg)

= = - -

st

y LW/ gy 0

Keijo Heljanko

54

Tik-79.186 Reactive Systems

s3
fv\/

—_— - -

54’ s5 s6 s’

y WSy NSy ¥

Figure 3: M,so = E(f1U f2).

st

y W/ gy 0

Keijo Heljanko

55

Tik-79.186 Reactive Systems

s3

Sy NSy Sy Sy A

S6

S4Q sb

Figure 4: M, sq = EG(f1)

Keijo Heljanko

56

Tik-79.186 Reactive Systems

4)

7.4 Complexity of Model Checking

Let AP be fixed, | M| be the size of the Kripke structure (|S|+ |R|), and |f]| the size of
the formula (number of subformulas of f).

The following time complexity model checking algorithms are used in practise:
e C'T'L model checking can be done in time O(|M| - |f])
e LTL and CTL* model checking can be done in time O(|M| - 2°9UfD)

Keijo Heljanko

N /

57

Tik-79.186 Reactive Systems

an thus it makes sense to talk about the case when the formula f is fixed:

e Model checking a fixed formula f of CTL, LTL, or CTL* is
NLOGSPACE-complete in |M|.

e Alternatively, it can be done in time O(|M|) (by using |M| space).

Suppose our system is composed out of automata synchronization, i.e., M is actually

program size as |A| = |A1| + [Az| - - - + | Axl.
The following bound is also known:

e Model checking a fixed formula f of C'T'L, LTL, or C'T'L* is PSPACE-complete
in | Al

e Alternatively, it can be done in time 29UAD (by using 2°UAD = O(|M|) space).

N

/The claim used by LT L proponents is that often formulas to be considered are small,\

the set of reachable states of an automaton A = A4; x Ay x --- x A,,. Now define the

/

Keijo Heljanko

58

