Recall the Mutex example from previous Lectures:

Figure 1: An Example Kripke Structure of a Mutex System

Keijo Heljanko
Some examples of LTL properties in the Mutex example Kripke structure M are:

- $M \models \Box \neg (CR0 \land CR1)$
 (both processes are never in their critical sections at the same time)

- $M \models \Box (TRY0 \Rightarrow \Diamond CR0)$
 (always when process 0 enters the trying section, it is eventually followed by process 0 entering the critical section)

- $M \models \Box (TRY0 \Rightarrow (TRY0 U CR0))$
 (always when process 0 enters the trying section, it stays in the trying section until it enters the critical section)

- $M \not\models \Diamond CR0$
 (the following does not hold: process 0 will eventually enter the critical section)

- $M \not\models \Box \Diamond CR0 \Rightarrow \Box \Diamond CR1$
 (the following does not hold: if process 0 is infinitely often in the critical section, then also process 1 is infinitely often in the critical section)
Some additional examples:

- \(M \models \Box \Diamond CR0 \Rightarrow \Box \Diamond TRY0 \)
 (if process 0 is infinitely often in the critical section, then it is also infinitely often in the trying section)

- \(M \models \Diamond \Box NC0 \Rightarrow \Diamond \Box \neg CR0 \)
 (if process 0 all the time from a certain point onwards is in the non-critical section, then process 0 will all the time from a certain point onwards be not in the critical section)

- \(M \models (\Diamond \Box TRY0 \land \Box \Diamond TRY1) \Rightarrow (\Box \Diamond CR0 \land \Box \Diamond CR1) \)
 (if both process 0 and 1 are infinitely often in the trying section, then both process 0 and 1 are infinitely often also in the critical section)
7.2 Temporal Logic CTL^*

The logic CTL^* (called “full branching time logic CTL^*”) is a branching temporal logic, which includes all of LTL (with one syntactical difference).

An additional feature over LTL are the path quantifiers, A (“for all paths”) and E (“for some path”). They can be used to express whether the property should hold for all paths starting from a state, or whether the property should hold for at least one path.

Actually, as we will see, any LTL formula f is equivalent to the corresponding CTL^* formula Af.
There are two kinds of formulas in CTL^*: **state formulas** and **path formulas**.

A CTL^* state formula g is:

- true, false, or p for $p \in AP$.
- $\neg g_1$ or $g_1 \lor g_2$, where g_1 and g_2 are CTL^* state formulas.
- Af_1, where f_1 is a CTL^* path formula.

A CTL^* path formula f is either:

- A CTL^* state formula g.
- $\neg f_1, f_1 \lor f_2, Xf_1, f_1 U f_2$, where f_1 and f_2 are CTL^* path formulas.

Moreover, the top-level formula g is defined to always be a state formula in CTL^*.
As before with LTL, we can define a non-minimal version of the syntax which includes E, \land, and $f_1 R f_2$:

A CTL^* state formula g is:

- **true, false, or** p for $p \in AP$.
- $\neg g_1$ or $g_1 \lor g_2$, $g_1 \land g_2$, where g_1 and g_2 are CTL^* state formulas.
- Ef_1, where f_1 is a CTL^* path formula.
- Af_1, where f_1 is a CTL^* path formula.

A CTL^* path formula f is either:

- A CTL^* state formula g.
- $\neg f_1, f_1 \lor f_2, f_1 \land f_2, X f_1, f_1 U f_2, f_1 R f_2$, where f_1 and f_2 are CTL^* path formulas.

All DeMorgan rules for LTL are also valid for CTL^*, the only new DeMorgan rule is $E g_1 = \neg A \neg g_1$.

Keijo Heljanko
7.2.1 Semantics of CTL^*

We give semantics to CTL^* formulas as follows.

The notation $M, s \models g$ denotes that the CTL^* state formula g holds in state s of the Kripke structure.

The notation $M, \pi \models f$ denotes that the CTL^* path formula f holds in the path π (of the Kripke structure M).

Now (as also in the case of LTL), the notation $M \models g$ is a short hand for $M, s^0 \models g$. (A CTL^* formula holds for a system M if it holds in the initial state s^0 of the system.)

The semantics can now be inductively defined as follows.
The semantics of CTL^* state formulas is given by:

- $M, s \models \text{true}$
- $M, s \not\models \text{false}$
- $M, s \models p$ iff $p \in L(s)$ (p is an atomic proposition)
- $M, s \models \neg g$ iff not $M, s \models g$
- $M, s \models g_1 \lor g_2$ iff $M, s \models g_1$ or $M, s \models g_2$
- $M, s \models g_1 \land g_2$ iff $M, s \models g_1$ and $M, s \models g_2$
- $M, s \models Ef_1$ iff there exists a path π starting from s such that $M, \pi \models f_1$
- $M, s \models Af_1$ iff for all paths π starting from s it holds that $M, \pi \models f_1$
The semantics of CTL^* path formulas follows closely the definition for LTL formulas, only the first item is new.

- $M, \pi \models g_1$ iff s is the first state of π and $M, s \models g_1$ (g_1 is a state formula)
- $M, \pi \models \neg f_1$ iff not $M, \pi \models f_1$
- $M, \pi \models f_1 \lor f_2$ iff $M, \pi \models f_1$ or $M, \pi \models f_2$
- $M, \pi \models f_1 \land f_2$ iff $M, \pi \models f_1$ and $M, \pi \models f_2$
- $M, \pi \models X f_1$ iff $M, \pi^1 \models f_1$
- $M, \pi \models f_1 U f_2$ iff there exists $j \geq 0$, such that $M, \pi^j \models f_2$ and for all $0 \leq i < j$, $M, \pi^i \models f_1$
- $M, \pi \models f_1 R f_2$ iff for all $j \geq 0$, if for every $0 \leq i < j$ $M, \pi^i \not\models f_1$ then $M, \pi^j \models f_2$
Some examples of properties which cannot be expressed in LTL, but can be expressed in CTL^* are:

- $AG(\neg Restart)$
 (From all the states of the system it is possible to reach the restart state.)

- $AG(\neg (EG \neg Restart))$
 (From all the states of the system it is possible to execute an infinite execution without going through the restart state.)

- $AF(AXa)$
 (In all executions of the system from the initial state eventually a state will be reached, such that in all its possible successors a holds.)
7.3 Temporal Logic CTL

The temporal logic CTL is the subset of CTL^*, where the temporal operators X and U are always immediately preceded by a path quantifier.

An example CTL^* formula not expressible in CTL is $A(FGp) \lor AG(EFp)$.

Often CTL formulas are actually written in the following syntax: $EX(f_1), AX(f_1), EF(f_1), AF(f_1), EG(f_1), AG(f_1), EU(f_1, f_2)$, and $AU(f_1, f_2)$, where the last two are different in the usual syntax, namely $E(f_1 U f_2)$ and $A(f_1 U f_2)$.

The temporal logic CTL is interesting, because it has a very efficient model checking algorithm.

Some examples of properies expressable in CTL follow. In the figures black color denotes the fact that f_2 holds, and gray color the fact that f_1 holds. In white nodes neither of the two subformulas hold.
Figure 2: $M, s_0 \models A(f_1 U f_2)$.
Figure 3: $M, s_0 \models E(f_1 U f_2)$.
Figure 4: $M, s_0 \models EG(f_1)$
7.4 Complexity of Model Checking

Let AP be fixed, $|M|$ be the size of the Kripke structure ($|S| + |R|$), and $|f|$ the size of the formula (number of subformulas of f).

The following time complexity model checking algorithms are used in practise:

- CTL model checking can be done in time $O(|M| \cdot |f|)$
- LTL and CTL^* model checking can be done in time $O(|M| \cdot 2^{O(|f|)})$
The claim used by LTL proponents is that often formulas to be considered are small, and thus it makes sense to talk about the case when the formula f is fixed:

- Model checking a fixed formula f of CTL, LTL, or CTL* is NLOGSPACE-complete in $|M|$.
- Alternatively, it can be done in time $O(|M|)$ (by using $|M|$ space).

Suppose our system is composed out of automata synchronization, i.e., M is actually the set of reachable states of an automaton $A = A_1 \times A_2 \times \cdots \times A_n$. Now define the program size as $|A| = |A_1| + |A_2| + \cdots + |A_n|$.

The following bound is also known:

- Model checking a fixed formula f of CTL, LTL, or CTL* is PSPACE-complete in $|A|$.
- Alternatively, it can be done in time $2^{O(|A|)}$ (by using $2^{O(|A|)} = O(|M|)$ space).