
Tik-79.186 Reactive Systems 42

'

&

$

%

T-79.186 Reactive Systems
Spring 2003, Lecture 4

Keijo Heljanko

February 4, 2003

Keijo Heljanko

Tik-79.186 Reactive Systems 43

'

&

$

%

Recall the Mutex example from previous Lectures:

L = {TRY0, TRY1}

L = {TRY0, NC1}

L = {TRY0, TRY1}

L = {NC0, NC1}

L = {NC0, TRY1}

L = {CS0, NC1} L = {NC0, CS1}

L = {CS0, TRY1} L = {TRY0, CS1}

s1 s2

s3s4

s7

s5 s6

s8

s0

Figure 1: An Example Kripke Structure of a Mutex System

Keijo Heljanko

Tik-79.186 Reactive Systems 44

'

&

$

%

Some examples of LTL properties in the Mutex example Kripke structure M are:

• M |= 2¬(CR0 ∧ CR1)
(both processes are never in their critical sections at the same time)

• M |= 2(TRY0 ⇒ 3CR0)
(always when process 0 enters the trying section, it is eventually followed by

process 0 entering the critical section)

• M |= 2(TRY0 ⇒ (TRY0 U CR0))
(always when process 0 enters the trying section, it stays in the trying section until

it enters the critical section)

• M 6|= 3CR0
(the following does not hold: process 0 will eventually enter the critical section)

• M 6|= 23CR0 ⇒ 23CR1
(the following does not hold: if process 0 is infinitely often in the critical section,

then also process 1 is infinitely often in the critical section)

Keijo Heljanko

Tik-79.186 Reactive Systems 45

'

&

$

%

Some additional examples:

• M |= 23CR0 ⇒ 23TRY0
(if process 0 is infinitely often in the critical section, then it is also infinitely often

in the trying section)

• M |= 32NC0 ⇒ 32¬CR0
(if process 0 all the time from a certain point onwards is in the non-critical section,

then process 0 will all the time from a certain point onwards be not in the critical

section)

• M |= (23TRY0 ∧23TRY1) ⇒ (23CR0 ∧23CR1)
(if both process 0 and 1 are infinitely often in the trying section, then both process

0 and 1 are infinitely often also in the critical section)

Keijo Heljanko

Tik-79.186 Reactive Systems 46

'

&

$

%

7.2 Temporal Logic CTL∗

The logic CTL∗ (called “full branching time logic CTL∗”) is a branching temporal

logic, which includes all of LTL (with one syntactical difference).

An additional feature over LTL are the path quantifiers, A (“for all paths”) and E

(“for some path”). They can be used to express whether the property should hold for all

paths starting from a state, or whether the property should hold for at least one path.

Actually, as we will see, any LTL formula f is equivalent to the corresponding CTL∗

formula Af .

Keijo Heljanko

Tik-79.186 Reactive Systems 47

'

&

$

%

There are two kinds of formulas in CTL∗: state formulas and path formulas.

A CTL∗ state formula g is:

• true, false, or p for p ∈ AP .

• ¬g1 or g1 ∨ g2, where g1 and g2 are CTL∗ state formulas.

• Af1, where f1 is a CTL∗ path formula.

A CTL∗ path formula f is either:

• A CTL∗ state formula g.

• ¬f1, f1 ∨ f2, Xf1, f1 U f2, where f1 and f2 are CTL∗ path formulas.

Moreover, the top-level formula g is defined to always be a state formula in CTL∗.

Keijo Heljanko

Tik-79.186 Reactive Systems 48

'

&

$

%

As before with LTL, we can define a non-minimal version of the syntax which includes

E,∧, and f1 R f2:

A CTL∗ state formula g is:

• true, false, or p for p ∈ AP .

• ¬g1 or g1 ∨ g2, g1 ∧ g2, where g1 and g2 are CTL∗ state formulas.

• Ef1, where f1 is a CTL∗ path formula.

• Af1, where f1 is a CTL∗ path formula.

A CTL∗ path formula f is either:

• A CTL∗ state formula g.

• ¬f1, f1 ∨ f2, f1 ∧ f2, Xf1, f1 U f2, f1 R f2, where f1 and f2 are CTL∗ path

formulas.

All DeMorgan rules for LTL are also valid for CTL∗, the only new DeMorgan rule is

Eg1 = ¬A¬g1.

Keijo Heljanko

Tik-79.186 Reactive Systems 49

'

&

$

%

7.2.1 Semantics of CTL∗

We give semantics to CTL∗ formulas as follows.

The notation M, s |= g denotes that the CTL∗ state formula g holds in state s of the

Kripke structure.

The notation M, π |= f denotes that the CTL∗ path formula f holds in the path π (of

the Kripke structure M).

Now (as also in the case of LTL), the notation M |= g is a short hand for M, s0 |= g.

(A CTL∗ formula holds for a system M if it holds in the initial state s0 of the system.)

The semantics can now be inductively defined as follows.

Keijo Heljanko

Tik-79.186 Reactive Systems 50

'

&

$

%

The semantics of CTL∗ state formulas is given by:

• M, s |= true

• M, s 6|= false

• M, s |= p iff p ∈ L(s) (p is an atomic proposition)

• M, s |= ¬g iff not M, s |= g

• M, s |= g1 ∨ g2 iff M, s |= g1 or M, s |= g2

• M, s |= g1 ∧ g2 iff M, s |= g1 and M, s |= g2

• M, s |= Ef1 iff there exists a path π starting from s such that M, π |= f1

• M, s |= Af1 iff for all paths π starting from s it holds that M, π |= f1

Keijo Heljanko

Tik-79.186 Reactive Systems 51

'

&

$

%

The semantics of CTL∗ path formulas follows closely the definition for LTL formulas,

only the first item is new.

• M, π |= g1 iff s is the first state of π and M, s |= g1 (g1 is a state formula)

• M, π |= ¬f1 iff not M, π |= f1

• M, π |= f1 ∨ f2 iff M,π |= f1 or M, π |= f2

• M, π |= f1 ∧ f2 iff M,π |= f1 and M, π |= f2

• M, π |= X f1 iff M, π1 |= f1

• M, π |= f1 U f2 iff there exists j ≥ 0, such that M,πj |= f2 and for all 0 ≤ i < j,

M, πi |= f1

• M, π |= f1 R f2 iff for all j ≥ 0, if for every 0 ≤ i < j M, πi 6|= f1 then M, πj |= f2

Keijo Heljanko

Tik-79.186 Reactive Systems 52

'

&

$

%

Some examples of properies which cannot be exressed in LTL, but can be expressed in

CTL∗ are:

• AG(EFRestart)
(From all the states of the system it is possible to reach the restart state.)

• AG(EG¬Restart)
(From all the states of the system it is possible to execute an infinite execution

without going through the restart state.)

• AF (AXa)
(In all executions of the system from the initial state eventually a state will be

reached, such that in all its possible successors a holds.)

Keijo Heljanko

Tik-79.186 Reactive Systems 53

'

&

$

%

7.3 Temporal Logic CTL

The temporal logic CTL is the subset of CTL∗, where the temporal operators X and

U are always immediately preceded by a path quantifier.

An example CTL∗ formula not expressible in CTL is A(FGp) ∨AG(EFp).

Often CTL formulas are actually written in the following syntax:

EX(f1), AX(f1), EF (f1), AF (f1), EG(f1), AG(f1), EU(f1, f2), and AU(f1, f2),
where the last two are different in the usual syntax, namely E(f1 U f2) and A(f1 U f2).

The temporal logic CTL is interesting, because it has a very efficient model checking

algorithm.

Some examples of properies expressable in CTL follow. In the figures black color

denotes the fact that f2 holds, and gray color the fact that f1 holds. In white nodes

neither of the two subformulas hold.

Keijo Heljanko

Tik-79.186 Reactive Systems 54

'

&

$

%

�����������
�����������
�����������

���������
���������
���������

s0

s1

s3 s4 s5 s6 s7 s8

s2

Figure 2: M, s0 |= A(f1 U f2).

Keijo Heljanko

Tik-79.186 Reactive Systems 55

'

&

$

%

�����������
�����������
�����������

���������
���������
���������

s0

s1

s3 s4 s5 s6 s7 s8

s2

Figure 3: M, s0 |= E(f1 U f2).

Keijo Heljanko

Tik-79.186 Reactive Systems 56

'

&

$

%

s0

s1

s3 s4 s5 s6 s7 s8

s2

Figure 4: M, s0 |= EG(f1)

Keijo Heljanko

Tik-79.186 Reactive Systems 57

'

&

$

%

7.4 Complexity of Model Checking

Let AP be fixed, |M | be the size of the Kripke structure (|S|+ |R|), and |f | the size of

the formula (number of subformulas of f).

The following time complexity model checking algorithms are used in practise:

• CTL model checking can be done in time O(|M | · |f |)
• LTL and CTL∗ model checking can be done in time O(|M | · 2O(|f |))

Keijo Heljanko

Tik-79.186 Reactive Systems 58

'

&

$

%

The claim used by LTL proponents is that often formulas to be considered are small,

an thus it makes sense to talk about the case when the formula f is fixed:

• Model checking a fixed formula f of CTL, LTL, or CTL∗ is

NLOGSPACE-complete in |M |.
• Alternatively, it can be done in time O(|M |) (by using |M | space).

Suppose our system is composed out of automata synchronization, i.e., M is actually

the set of reachable states of an automaton A = A1 ×A2 × · · · × An. Now define the

program size as |A| = |A1|+ |A2| · · ·+ |An|.
The following bound is also known:

• Model checking a fixed formula f of CTL, LTL, or CTL∗ is PSPACE-complete

in |A|.
• Alternatively, it can be done in time 2O(|A|) (by using 2O(|A|) = O(|M |) space).

Keijo Heljanko

