
Tik-79.186 Reactive Systems 20

'

&

$

%

T-79.186 Reactive Systems
Spring 2003, Lecture 2

Keijo Heljanko

January 22, 2003

Keijo Heljanko

Tik-79.186 Reactive Systems 21

'

&

$

%

5 Finite State Automata – Part II

The operations we have defined for finite state automata so far have resulted in

automata whose size is polynomial in the sizes of input automata.

The most straightforward way of implementing complementation of a non-deterministic

automaton is to first determinize it, and then complement the results.

Unfortunately determinization yields an exponential blow up. (A worst-case exponential

blow-up is in fact unavoidable in complementing non-deterministic automata.)

Keijo Heljanko

Tik-79.186 Reactive Systems 22

'

&

$

%

Determinization of finite state automata can be done as follows:

Definition 5.1 Let A1 = (Σ, S1, S
0
1 , ρ1, F1) be a non-deterministic automaton. We

define a deterministic automaton A = (Σ, S, S0, ρ, F), where

• S = 2S1 , the set of all sets of states in S1,

• S0 = {S0
1}, a single state having as label the set of initial states of A1,

• ρ(s, a) = {t | t ∈ ρ1(s′, a) for some s′ ∈ s }, and

• F = {s ∈ S |S ∩ F1 6= ∅}, those states in S which contain at least one accepting
state of A1.

The intuition behind the construction is that it combines all possible runs on given

input word into one run over a larger state set. (The state set remembers all states in

which the automaton can be in after reading the input so far.)

Note that L(A) = L(A1), and A is deterministic. If A1 has n states, the automaton A
will contain 2n states.

Keijo Heljanko

Tik-79.186 Reactive Systems 23

'

&

$

%

We have now shown that finite state automata are closed under all Boolean operations,

as with ∪, ∩, and A all other Boolean operations can be done.

All operations except for determinization created a polynomial size output in the size of

the inputs.

Note, however, that even if A1,A2,A3,A4 have k states each, the automaton

A′4 = ((((A1 ∩ A2) ∩ A3) ∩ A4) can have k4 states, and thus in the general A′i will

have ki states. (Note: The parenthesis above can and will often be dropped.)

Therefore even if if a single use of ∩ is polynomial, repeated applications often will

result in a state explosion problem.

In fact, the use of ∩ as demonstrated above is the main way of composing system out

of its components. The exact definition of the product operator × (used here to

implement ∩) differs slightly in other state machine based formalisms, but they all

suffer from a similar state explosion problem.

Keijo Heljanko

Tik-79.186 Reactive Systems 24

'

&

$

%

5.1 Checking Safety Properties with FSA

A safety property be informally described as a property stating that “nothing bad

should happen”. (We will come back to the formal definition later in the course.)

When checking safety properties, the behavior of a system can be described by a finite

state automaton, call it A.

Also in most cases the allowed behaviors of the system can be specified by another

automaton, call it the specification automaton S.

Assume that the specification specifies all legal behaviors of the system. In other words

a system is incorrect if it has some behavior (accepts a word) that is not accepted by

the specification. In other words a correct implementation has less behavior than the

specification, or more formally L(A) ⊆ L(S).

Keijo Heljanko

Tik-79.186 Reactive Systems 25

'

&

$

%

Checking whether L(A) ⊆ L(S) holds is referred to as performing a language

containment check.

By using simple automata theoretic constructions given above, we can now check

whether the system meets its specification. Namely, we can create a product

automaton P = A ∩ S and then check whether L(P) = ∅.
In case the safety property does not hold, the automaton P has a counterexample run

rp which accepts a word w, such that w ∈ L(A) but w 6∈ L(S).

By projecting rp on the states of A one can obtain a run of ra of the system (a

sequence of states of the system) which violates the specification S.

Keijo Heljanko

Tik-79.186 Reactive Systems 26

'

&

$

%

6 Kripke Structures

Temporal logics are traditionally defined in terms of Kripke structures. A Kripke

structure is basically a graph having the reachable states of the system as nodes and

state transitions of the system as edges. It also contains a labelling of the states of the

system with properties that hold in each state.

Definition 6.1 Let AP be a non-empty set of atomic propositions. A Kripke
structure is a four tuple M = (S, s0, R, L), where

• S is a finite set of states,

• s0 ∈ S is an initial state,

• R ⊆ S × S is a transition relation, for which it holds that
∀s ∈ S : ∃s′ ∈ S : (s, s′) ∈ R, and

• L : S → 2AP is labelling, a function which labels each state with the atomic
propositions which hold in that state.

Keijo Heljanko

Tik-79.186 Reactive Systems 27

'

&

$

%

Kripke structures are the model used to give semantics (definition of when a formula

holds) for the most widely used specification languages for reactive systems, namely

temporal logics.

Kripke structures can be seen as describing the behavior of the modeled system in an

modeling language independent manner.

As can be directly seen from the definition Kripke structures have a close relationship

with automata.

The changes are the following:

• labelling is on states instead of having labels on arcs,

• there is at most one arc between two states, and

• there is no definition of final states.

Next we will continue with an example of a Kripke structure.

Keijo Heljanko

Tik-79.186 Reactive Systems 28

'

&

$

%

L = {TRY0, TRY1}

L = {TRY0, NC1}

L = {TRY0, TRY1}

L = {NC0, NC1}

L = {NC0, TRY1}

L = {CS0, NC1} L = {NC0, CS1}

L = {CS0, TRY1} L = {TRY0, CS1}

s1 s2

s3s4

s7

s5 s6

s8

s0

Figure 1: An Example Kripke Structure of a Mutex System

Keijo Heljanko

Tik-79.186 Reactive Systems 29

'

&

$

%

An often used trick is to actually use an automaton directly derived from the Kripke

structure in model checking. We define an automaton AM , which accepts exactly the

(finite) sequences of valuations in a path through the Kripke structure.

Definition 6.2 Let M = (S, s0, R, L) be a Kripke structure over a set of atomic
propositions AP . Define an automaton AM = (Σ, SM , S0

M , ρM , FM), where

• Σ = 2AP ,

• SM = S,

• S0
M = {s0},

• for all s ∈ S, a ∈ Σ:

– if L(s) 6= a: ρM (s, a) = ∅,
– if L(s) = a: ρM (s, a) = T , where T ⊆ S is the largest set such that for all

t ∈ T it holds that (s, t) ∈ R,

, and

• FM = SM .

Keijo Heljanko

Tik-79.186 Reactive Systems 30

'

&

$

%

An example safety property for a path in the Kripke structure is is the following:

Spec: The path satisfies the property if it does not contain a state having both CR0
and CR1 holding at the same time.

It easy to give a specification automaton S which accepts all strings of AM

corresponding to paths which satisfy this property.

In this case the complement of the specification ¬Spec is the following:

The path satisfies the property if it contains a state in which both CR0 and CR1 hold

at the same time.

It can be checked by an (even simpler) automaton S.

Now all paths through the Kripke structure satisfy Spec iff the is no path which

satisfies ¬Spec.

Keijo Heljanko

Tik-79.186 Reactive Systems 31

'

&

$

%

To implement this, we can thus easily obtain the product automaton P = AM × S,

and check that indeed L(P) = ∅ and thus the (safety property) expressed by S holds

for all paths through the Kripke structure M .

For even slightly more complicated specifications expressing the specification directly as

an automaton can be too complicated. This is one of the reasons temporal logics are

more widely used as a specification formalisms as are automata.

Automata are, however, one of the main implementation techniques in implementing

model checking algorithms for more expressive temporal logics, a subject which we will

discuss next.

Keijo Heljanko

