Return your answer by email (Postscript or PDF) to Timo Latvala at Timo.Latvala@hut.fi, or on paper to the lecture. All rounds will be 6 points maximum.

Please remember to include your name and student number to your answer.

For this home exercise use the automata definitions used in the Lecture slides.

1.) For each LTL formula f_i below, using the semantics of LTL create a Büchi automaton A_i, which accepts the language $\{w \in (\Sigma_i)\omega \mid w \models f_i\}$, where $\Sigma_i = 2^{AP_i}$. (The language contains exactly those infinite words which are models of the formula.)

 a) $AP_a = \{p\}, f_a = \Box \Diamond p$
 b) $AP_b = \{p\}, f_b = \Diamond \Box \neg p$
 c) $AP_c = \{p, q\}, f_c = p U q$
 d) $AP_d = \{p, q\}, f_d = (\Diamond \Box p) \Rightarrow (\Diamond \Box q)$
 e) $AP_e = \{p\}, f_e = XXp$
 f) $AP_f = \{p, q\}, f_f = p R q$

2.) Given $\Sigma = \{a, b\}$, consider the following two Büchi automata A_1:

 ![Diagram of A_1]

 and A_2:

 ![Diagram of A_2]

 a) Is it true that $L(A_1) = \emptyset$?
 b) Does the automaton A_1 accept the infinite string $(a)^\omega$?
 c) Does the automaton A_1 accept the infinite string $a(b)^\omega$?
 d) Does automaton A_2 accept $(abb)^\omega$? If it does, give an accepting run of the automaton.
 e) Construct the Büchi product automaton $A_e = A_1 \times A_2$.
 f) Is it true that $L(A_e) = \emptyset$? If not, give an accepting run of the automaton A_e.