Spring 2003

T-79.186 Reactive Systems Home Exercise 4 Deadline 18.2-2003 8:45

Return your answer by email (Postscript or PDF) to Timo Latvala at Timo.Latvala@hut.fi, or on paper to the lecture. All rounds will be 6 points maximum.

Please remember to include your name and student number to your answer.

For this home exercise use the automata definitions used in the Lecture slides.

- 1.) For each LTL formula f_i below, using the semantics of LTL create a Büchi automaton \mathcal{A}_i , which accepts the language $\{w \in (\Sigma_i)^{\omega} \mid w \models f_i\}$, where $\Sigma_i = 2^{AP_i}$. (The language contains exactly those infinite words which are models of the formula.)
 - a) $AP_a = \{p\}, f_a = \Box \Diamond p$
 - b) $AP_b = \{p\}, f_b = \Diamond \Box \neg p$
 - c) $AP_c = \{p, q\}, f_c = p U q$
 - d) $AP_d = \{p, q\}, f_d = (\Diamond \Box p) \Rightarrow (\Diamond \Box q)$
 - e) $AP_e = \{p\}, f_e = XXp$
 - f) $AP_f = \{p, q\}, f_f = p R q$
- 2.) Given $\Sigma = \{a, b\}$, consider the following two Büchi automata \mathcal{A}_1 :

and \mathcal{A}_2 :

- a) Is it true that $\mathcal{L}(\mathcal{A}_1) = \emptyset$?
- b) Does the automaton \mathcal{A}_1 accept the infinite string $(a)^{\omega}$?
- c) Does the automaton \mathcal{A}_1 accept the infinite string $a(b)^{\omega}$?
- d) Does automaton \mathcal{A}_2 accept $(abb)^{\omega}$? If it does, give an accepting run of the automaton.
- e) Construct the Büchi product automaton $\mathcal{A}_e = \mathcal{A}_1 \times \mathcal{A}_2$.
- f) Is it true that $\mathcal{L}(\mathcal{A}_e) = \emptyset$? If not, give an accepting run of the automaton \mathcal{A}_e .