Return your answer by email (Postscript or PDF) to Timo Latvala at Timo.Latvala@hut.fi, or on paper to the lecture. All rounds will be 6 points maximum.

Please remember to include your name and student number to your answer.

For this home exercise round use the definition of automata as given by Chapter 1 of the book Bérard et al.: Systems and Software Verification, (pages 5-26).

1.) a) Give an automata description A_3 (without using variables in the automata) for a modulo 3 counter, which has the following two actions: (i) dec decreases the value of the counter by one (mod 3), and (ii) inc2 increases the value of the counter by two (mod 3). The automaton should start in a state with a counter value 0.

b) Give another automaton A_4, which is a modulo 4 counter, and also has the actions dec and inc2 (both mod 4).

c) Create the synchronized product automaton P, which is the synchronization $A_3 \times A_4$ using the synchronization set $\text{Sync} = \{(\text{dec}, \text{inc2}), (\text{inc2}, \text{dec})\}$. (Also giving only the reachable states suffice.)

2.) a) In the book (Berard et al., pages 21–23) an elevator system is described, which is a synchronized product of five automata (3 doors, a cabin, and a controller). Give a partial execution of the system (starting from the initial state), which ends in any state in which the controller is in state free2.

Note that the book has the following off-by-one errors in the definition of set Sync on page 23: The numbering of doors should be from 0 to 2 instead of from 1 to 3 as in the (buggy) definition of Sync in the book.

b) Give the set of reachable states of the Petersens MUTEX-algorithm (Berard et al., pages 25–26).