
'

&

$

%

Software Testing

• Overview and Terminology

• Inspections and Walkthroughs

• Control Flow Coverage Criteria

• Dataflow Coverage Criteria

• Propagating Path Conditions

• Equivalence Partition

1



'

&

$

%

What is Testing ?

“The process of executing the checked program under certain precondi-

tions and parameters in order to find errors”

Goal: to reveal errors - not to prove they don’t exist

Sequential programs

2



'

&

$

%

Different Testing Approaches

• Unit (module) testing

• Integration testing

• System testing

• Acceptance testing

• Regression testing

• Stress testing

3



'

&

$

%

Black box testing: testing a system using only knowledge of its ex-

ternal interface - no internal structure.

White (transparent) box testing: knowledge of the internal struc-

ture of the system is used in testing.

Execution path: a sequence of instructions in the code.

Code coverage analysis: a way to assess the “quality and quantity”

of testing.

Test case: preconditions and parameters for running the program,

and the expected output & other criteria for passing the test.

Test suite: a set of test cases.

Test environment: allows executing the test cases and checking the

result.

4



'

&

$

%

Inspections and Walkthroughs

• Manual testing methods

Code inspection: manually checking the code, possibly agains a list

of potential errors.

Code walkthrough: “Simulating” some test cases.

5



'

&

$

%

Control Flow Coverage Criteria

Statement coverage: each statement of the program appears in at

least one test case.

Edge coverage: each edge of the flowchart appears in some test case.

Condition coverage: each condition appears in some test case where

it evaluates to true, and in another test case, where it is interpreted

as false.

Edge/condition coverage: requires both the edges and the condi-

tions to be covered.

Multiple condition coverage: each boolean combination that may

appear in any decision predicate must appear in some test case.

Path coverage: every executable path has to be covered by a test

case.

6



'

&

$

%

y := y + 1

x := x − 1

x = y ∧ z > w
true false

7



'

&

$

%

Limitations of Control Flow Coverage Criteria

• Not comprehensive

• Biased towards the way the code was written

• Difficult to assess the effectiveness of different coverage criteria

8



'

&

$

%

path
coverage

statement
coverage

condition
coverage

multiple
condition
coverage

edge/condition
coverage

edge
coverage

9



'

&

$

%

Dataflow Coverage

Test case selection is based on paths between assignments to, and uses

of variables.

def (x) the nodes where some value is assigned to x.

p-use(x) the nodes where x is used in a predicate.

c-use(x) the nodes where x is used in an expression other than a

predicate.

def-clear(x) the paths that include only nodes not in def (x).

dpu(s, x) nodes s′ such that there is a def-clear(x)path from s to s′

(except the first node), and s′ is in p-use(x).

dcu(s, x) nodes s′ such that there is a def-clear(x)path from s to s′,

and s′ is in c-use(x).

10



'

&

$

%

Dataflow Coverage Criteria

For each program variable x, and for each statement in def (x), include

at least the following def-clear(x)paths:

all-defs a path to some node in dpu(s, x)or in dcu(s, x).

all-p-uses a path to each node in dpu(s, x).

all-p-uses/some-c-uses a path to each node in dpu(s, x), but if

dpu(s, x)is empty, at least one path to some node in dcu(s, x).

all-c-uses/some-p-uses a path to each node in dcu(s, x), but if

dcu(s, x)is empty, at least one path to some node in dpu(s, x).

all-uses a path to each node in dpu(s, x)and to each node in dcu(s, x).

all-du-paths all the paths to each node in dpu(s, x)and to each node

in dcu(s, x).

11



'

&

$

%

all−c−uses
some−p−uses

coverage

all−p−uses
some−c−uses

coverage

all−defs
coverage

all−p−uses
coverage

all−uses
coverage

all−du−paths
coverage

12


