T-79.179 Parallel and Distributed Digital Systems Exercise 5 21.3-3.4 2005

Consider two queues, Q_1 and Q_2 , of capacity one that are put in sequence (see Section 5.5 p.60 in [Fok00]). Let Δ be a finite set of data elements. Queue Q_1 reads a datum $d \in \Delta$ from a channel 1 and sends this datum into channel 3. Queue Q_2 reads a datum $d \in \Delta$ from a channel 3 and sends this datum into channel 2 (the system is depicted on p.60 in [Fok00]). The two queues are defined by recursive specifications:

$$Q_1 = \sum_{d \in \Delta} r_1(d) \cdot s_3(d) \cdot Q_1$$
$$Q_2 = \sum_{d \in \Delta} r_3(d) \cdot s_2(d) \cdot Q_2$$

where action $r_i(d)$ represents reading a datum $d \in \Delta$ from channel *i*, action $s_i(d)$ represents sending datum $d \in \Delta$ into channel *i*, and $\sum_{d \in \Delta} t(d)$ denotes the alternative composition of process terms t(d), for all elements $d \in \Delta$. The communication function γ is defined by:

$$\gamma(s_3(d), r_3(d)) = c_3(d)$$

where action $c_3(d)$ represents communication of datum d via channel 3 (all other communications between atomic actions result to δ). The overall behavior of the system is described as the term

$$\tau_{\{c_3(d)|d\in\Delta\}}(\partial_{\{s_3(d),r_3(d)|d\in\Delta\}}(Q_2||Q_1)).$$

- 1. Give the specification of the two queues with $\Delta = \{d1, d2\}$ as a process declaration in μ CRL language.
- 2. Use μ CRL tool set to produce the process graph that belongs to the process declaration from part 1.
- **3.** Use μ CRL tool set to show that the system does not contain any dead-locks.