Laboratory for Theoretical Computer Science T-79.179 Parallel and Distributed Digital Systems Tutorial 5 16. & 17.2.2005

- 4.1 Construct two non-equivalent, contact free C/E-systems Σ and Σ' and bijection $\varepsilon : E_{\Sigma} \to E_{\Sigma'}$ such that $\forall e_1, e_2 \in E_{\Sigma} : \sigma(e_1, e_2) = \sigma(\varepsilon(e_1), \varepsilon(e_2)).$
- 4.2 Let Σ be a finite, cyclic C/E-system and let $E_1, E_2 \subseteq E_{\Sigma}$. Show that $\sigma(E_1, E_2) = \omega \Leftrightarrow$ there exists a non-empty process $p : K \to \Sigma$ such that $p(^{\circ}K) = p(K^{\circ})$ and $\nu'(p, E_1, E_2) > 0$.
- 4.3 b) Consider the C/E-system shown in the book
 - i) Compute the (unweighted) synchronic distance $\sigma(E_1, E_2)$.
 - ii) Does a weight mapping g exist such that $\sigma_g(E_1, E_2)$ is finite?
 - 4.4 In the four seasons system shown below, represent the following facts:
 - a) If it is neither summer nor winter, then it is spring or autumn.
 - b) If it is summer then it is neither winter nor autumn.

