
Laboratory for Theoretical Computer Science
T-79.179 Parallel and Distributed Digital Systems

Tutorial 14
27th & 28th April 2005

Let us examine the following algorithm:

TicketME algorithm (informal): A shared variable holds a pair 〈next , granted〉
of values in {1, . . . , n}, initially 〈1, 1〉. The next component represents the next
“ticket” into the critical section, while the granted component represents the
last “ticket” that has been granted permission to enter the critical section.
When a process enters the trying section, it “takes a ticket,” that is, it copies
and increments the next component modulo n. When the ticket of a process is
equal to the granted component, it goes to the critical region. When process
exits the critical section, it increments the granted component modulo n.

Nancy A. Lynch: Distributed Algorithms, 1996, ISBN 1-55860-348-4

¹¸
º·

¹¸
º·

¹¸
º·
¹¸
º·
¹¸
º·

¹¸
º·

idle

pending

testing

turn

tickets

critical

ϕx

ϕ

ϕxtry

enter

exit

test

?

?

[x]

[x]

-[x] -(s 6= v)[x]¡
¡

¡
¡

¡
¡

¡¡µ

ª

[〈x, l〉]

[〈x, s〉]

©©©©©©©©*

¼

[〈s, v〉]

[〈s ⊕ 1, v〉]

µ ´

6

(s = v)[x]

HHHHHHHY

j

[〈x, l〉]

¾ -[〈s, v〉]

©©©©©©©¼

*[x]

(l 6= v)[x]

-(l=v)[x]

¶ ³
?

[x]
-¾[〈x, l〉] [〈x, 0〉]

HHHHHHHHj

Y
[〈s, v〉]

[〈s, v ⊕ 1〉]

¾[x]
A

〈a, a〉

A×{0}

The Maria description of the net is:

// Owner of a lock (0=free, 1..n=some process 1..n)

typedef unsigned (0..2) owner_t;

// The number of a process (1..>owner_t)

typedef owner_t (1..) client_t;

typedef struct {

client_t next;

client_t granted;

} turn_t;

typedef struct {

client_t client;

owner_t owner;

} ticket_t;

place idle (0..#client_t) client_t: client_t client: client;

place pending (0..#client_t) client_t;

place testing (0..#client_t) client_t;

place critical (0..1) client_t;

place turn (1) turn_t: <turn_t;

place tickets (#client_t) ticket_t: client_t client: { client, 0 };

trans try

in { place idle: client; }

out { place pending: client; };

trans enter

in {

place pending: client;

place turn: { next, granted };

place tickets: { client, t };

}

out {

1

place testing: (next != granted)#client;

place critical: (next == granted)#client;

place turn: { +next, granted };

place tickets: { client, next };

};

trans test

in {

place testing: client;

place turn: { next, granted };

place tickets: { client, t };

}

out {

place testing: (t == 0 || is client_t t != granted)#client;

place critical: (t > 0 && is client_t t == granted)#client;

place turn: { next, granted };

place tickets: { client, t };

};

trans exit

in {

place critical: client;

place turn: { next, granted };

place tickets: { client, t };

}

out {

place idle: client;

place turn: { next, +granted };

place tickets: { client, 0 };

};

reject (1 subset place critical) && (2 subset place critical);

reject (1 subset place critical);

#ifdef FAIR

// A fairness assumption for transition exit

weakly_fair trans exit;

// A fairness assumption for transitions enter and test

weakly_fair client_t c:

(trans enter: client == c) || (trans test: client == c);

#endif // FAIR

2

We model check the following properties with Maria:

1. Two processes will never be in the critical section at the same time

2¬(critical(1) ∧ critical(2))

2. Process 1 never gets to enter the critical section

2¬critical(1)

3. Process 1 is able enter the critical section

2(pending(1) → 3critical(1))

4. Process 2 can exit the critical section

2(critical(2) → 3idle(2))

The properties will be checked by using a technique called model checking. We describe
the properties in temporal logic, here LTL, and check the properties with Maria. The
model checker will provide us with a counterexample if the property does not hold. The
technique used in Maria is based on Büchi automata. Büchi automata are automata on
infinite words. Both the negation of the property and the reachability graph of the system
are interpreted as Büchi automata, and then their product is checked. If the language
accepted by the product automaton is not empty, we know that the property does not
hold. In practice, the checking is done by searching for an accepting run of the automaton,
and if one is found, it is then displayed as a counterexample.

We load the net description to Maria with command maria -m ticket.pn

The command will not perform reachability analysis to the net. It will only load the net de-
scription. The net description can also be loaded in Maria with command @0$model "ticket"

Maria uses a separate program to translate LTL formulae to Büchi automata. Before the
formula can be checked, Maria must be told the used translator with command
@0$translator "lbt"

Lbt is here the name of the used translator. The argument of the command translator

is the name of the translator executable. The translator can also be loaded with the
command line option -p "lbt".

When the net description and the LTL-Büchi translator have been loaded, the LTL for-
mulae can be checked by writing the formula at the Maria prompt, for example:
@0$[]<>(2 subset place P)

Maria will then perform on-the-fly model checking, generating only the part of the reach-
ability graph needed for generating the counterexample. If no counterexample is found,
the whole reachability graph will be generated. By adding a command visual in front of
the formula, the possible counterexample will be displayed graphically.

The properties 1 and 2 can be checked by using Maria reject construct (see the attached
net description). The rejectφ is equivalent to LTL formula 2¬φ, but the property
is checked without the additional overhead of constructing the Büchi automaton and
synchronizing it with the reachability graph. For properties 3 and 4, we must however
use the LTL model checker.

When examining the counterexamples 3 and 4, we notice that they are not really sensi-
ble. That is, in a real system the sort of behavior shown in the counterexamples would
probably not exist. The executions of the system are not fair. Maria has built-in fairness
assumptions for model checking. The necessary assumptions have already been included
in the model, and we can take them in use with switch -DFAIR and check the properties
3 and 4 again. This time, only fair executions are taken into account when searching for
counterexamples.

The command weakly_fair corresponds to the fairness assumption 32e → 23f and
strongly_fair the assumption 23e → 23f . If a fairness assumption is defined for a
group of transitions, it requires that if one transition of the group is enabled infinitely or
infinitely often, some of the transitions of the group must be fired.

3

