
T-79.179 Spring 2005

Parallel and Distributed Digital Systems

Exercise 5 Solutions

21.3-3.4 2005

1. For a detailed overview of the µCRL language, see Chapter 2 of the ma-
nual. The µCRL specification for the two buffers put in a sequence
looks like:

sort Bool
func T,F: -> Bool
map and,or: Bool # Bool -> Bool

not: Bool -> Bool
eq: Bool # Bool -> Bool
var x:Bool

rew and(T,T)=T
and(F,x)=F
and(x,F)=F
or(T,x)=T
or(x,T)=T
or(F,F)=F
not(F)=T
not(T)=F
eq(T,T)=T
eq(T,F)=F
eq(F,T)=F
eq(F,F)=T

sort D
func d1,d2: -> D
map eq: D # D -> Bool
rew eq(d1,d1)=T

eq(d2,d2)=T
eq(d1,d2)=F
eq(d2,d1)=F

1

act
r1,s2,r3,s3,c3: D

comm
s3|r3=c3

proc
Q1 = sum(d:D,r1(d).s3(d).Q1)
Q2 = sum(d:D,r3(d).s2(d).Q2)

init hide({c3},encap({s3,r3}, Q2 || Q1))

Suppose buffers.mcrl is the file name of the above declaration. In-
struction
mcrl buffers.mcrl

determines whether the specification is a correct µCRL declaration.

Most tools of the µCRL tool set require specifications in a so-called
Linear Process Operator (LPO) format. The specification can be linea-
rised to LPO format, e.g., by the instruction:
mcrl -tbf -regular buffers.mcrl

This instruction produces a file buffers.tbf which contains an LPO.
The file buffer.tbf can be studied, e.g., with the pretty printer by the
instruction:
pp buffer.tbf .

2. From a file buffers.tbf, instruction
instantiator buffers.tbf

generates a file buffers.aut which contains the corresponding state
space. This can be studied, e.g., by instruction
less buffers.aut.

3. From a file buffers.tbf, instruction
instantiator -deadlock buffers.tbf

generates a file buffers.dlk which contains the list of deadlocking sta-
tes. This can be studied, e.g., by instruction
less buffers.dlk .

