
Laboratory for Theoretical Computer Science
T-79.179 Parallel and Distributed Digital Systems

Answers for Tutorial 1
20.1.2005

1.1 Add the conditions not winter and not spring and spring or autumn.

spring or autumn

winter

start of spring

spring summer

start of autumn

autumn

start of summer

start of winter

not winter and not spring

winter

start of spring

spring summer

start of autumn

autumn

start of summer

start of winter

1.2 The net below has the necessary changes included. To keep the graphical rep-
resentation readable, some arc weights have not been included in the picture.
Following arcs of transition a’ have weights different from one: (reading,a’):2;
(a’,reading):3. Following arcs of transition b’ have weights different from one:
(reading,b’):3; (b’,reading):2. Following arcs of transition a have weights dif-
ferent from one: (reading’,a):4;(a,reading’):2. Following arcs of transition b
have weights different from one: (reading’,b):2; (b,reading’):4.

a

b

a’

b’

processing

readyw

writing reading

reading’

readyr

processing

ac

3

3

2

2

2

2

2

2

2

2.1 Below is a C/E-system modelling the given problem. The conditions cab-
bage1, goat1 and wolf1 represent the situation where the creature has not yet
crossed the river, while the conditions cabbage2, goat2 and wolf2 represent the
situation where the creature has crossed the river. Similarly for the conditions
boat1 and boat2.

cabbage1

cabbage2

goat1

goat2

wolf1

wolf2

boat1

boat2

g12 g21c12 c21 w12 w21 boat21

We can search the solution by playing the token game. The rejected cases
are such that have conditions {goati, cabbagei, boatj} or {goati, wolfi, boatj},
where i, j ∈ {1, 2} and i 6= j. One possible solution is generated by the occur-
rence of the following events, in presented order: g12, boat21, w12, g21, c12,
boat21, g12.

2.2 s1 : spring or summer; s2 : autumn or spring; s3 : summer or autumn.

2.3 The systems are not equivalent. A first hint to the non-equivalence is the
difference between events c and e: in the first net they are detached but in
the second net they share a postcondition. This results in a different number of
steps regarding those events (see proposition 2.4 (d)). We can prove the non-
equivalence by showing that the case graphs are nonisomorphic (proposition
2.6 (d)). This turns out indeed to be the case, with the first net having 13
possible cases while the second net only has 8.

2.4 The case graph of the system consists of four cases which occur sequentially:
c1 : {s1, s4, s6}[c〉c2 : {s1, s3, s7}[a〉c3 : {s2, s4, s7}[d〉c4 : {s2, s5, s6}[b〉c1.

There exists an equivalent system with three conditions:

a

b

c

d



The case graph of the system presented above is c1 : {s1, s2}[c〉c2 : {s1, s3}[a〉c3 :
{s2, s3}[d〉c4 : ∅[b〉c1. The case graphs are isomorphic, and therefore the nets
are also equivalent (proposition 2.6 (d)). The net with three conditions is also
minimal w.r.t. number of conditions.

The maximum number of cases with n conditions is 2n. Thus, we need at
least two conditions.

Assume that we have exactly two conditions, q and r. From the equivalence
requirement it follows that the cases are {}, {q}, {r} ja {q,r}. The enabledness
and occurrence definitions of C/E-systems are taken into account on each row
of the following table. The table lists all possible occurrences of events in a
system with conditions p and q.

preconditions postconditions occurrences in case graph
{} {q} {} → {q} ja {r} → {q, r}
{} {r} {} → {r} ja {q} → {q, r}
{} {q, r} {} → {q, r}
{q} {} {q} → {} ja {q, r} → {r}
{q} {r} {q} → {r}
{r} {} {r} → {} ja {q, r} → {q}
{r} {q} {r} → {q}
{q, r} {} {q, r} → {}

It turns out that we can not choose four rows in such a way that the equiv-
alence requirement is satisfied. Note that there must be exactly four events
according to the proposition 2.4 (d).

2.6

Fig. 1 Contact free.

Fig. 2 Contact free.

Fig. 21 Contact free.

Fig. 22 Contact free.

Fig. 24 Contact in the system presented in the figure; event e1 can not occur
even though the precondition is satisfied.

Fig. 25 Contact in the system presented in the figure; event start of spring can
not occur even though the precondition (empty) is satisfied.

2.7 Complement construction is done by adding a complement condition for each
condition in the system, with arcs “turned around”.

t1 t2 t3 t4

s′
1

s′
2

s′
3

s′
4

s′
5

s1

s2

s3

s4

s5

2.8 Case graph contains all cases that can be reached by event occurrences, either
forward or backward. One possibility is to first generate all cases reachable by
forward event occurrences and then check each case for backward occurrences
resulting in an undiscovered case. If such cases are found, iterate until no new
cases are found neither by forward occurrences nor by backward occurrences.
Because the case graph of a C/E-system is finite, the method will eventually
terminate with the case graph fully constructed.

s1, s4

s2, s3, s4

s1, s3, s4 s2, s5

s1, s5 s2, s4

s2, s3, s5

s1, s3, s5

t2

t1 t3

t1, t3

t3 t1

t2

t1

t4

t1, t4 t1

t4 t4

t1, t4

t4


