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4.1 The following C/E-systems satisfy the requirements:
Σ:

b1b2 b3e1 e2

Σ′:
b4 b5 b6e3 e4

The nonequivalence is easily proved by constructing the case graphs of the
systems. That the systems are contact free is also trivially seen from the
systems.

The possibilities for the bijection ε are fairly limited, with only two events.
One possibility is ε(e1) = e3, ε(e2) = e4. Now all that remains is to compute
the synchronic distances σ(e1, e2) and σ(e3, e4) and verify that they are equiv-
alent. We start by constructing all the processes of both systems. This task
is doable in this particular situation, as the systems are trivial.
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From these processes we get for Σ: µ1(e1, b1, b2) = 1, µ1(e2, b1, b2) = 0,
µ2(e1, b1, b3) = 0 and µ2(e2, b1, b3) = 1. The subscripts denote the pro-
cesses. For Σ′ we get µ(e3, b4, b5) = 1, µ(e3, b5, b6) = 0, µ(e4, b4, b5) = 0 and
µ(e4, b5, b6) = 1. Now the variances for processes of Σ are ν(pΣ1

, e1, e2) = 1
and ν(pΣ2

, e1, e2) = 1. The variance for the process of Σ′ is ν(pΣ′ , e3, e4) = 1.

From the variances we get σ(e1, e2) = 1 and σ(e3, e4) = 1, proving that our
choice of the bijection was correct.

4.2 Intuitively, if the synchronic distance is ω, there is a cycle in the C/E-system
such that more of E1’s events are present in the cycle than those of E2. Also,
it must be possible for the cycle to occur unbounded number of times.

“⇒” As the C/E-system is cyclic, every case can be reached again after some
number of steps. Thus, there exists a non-empty process for which
p(◦K) = p(K◦)(K◦ and ◦K are defined in 3.1 (i)). This means that
the minimal elements of the underlying occurrence net K represent the
same case as the maximal elements, and thus we can create a process
p′ = p ◦ p ◦ · · · ◦ p, where p is repeated n times. As σ(E1, E2) = ω,
the variance ν ′(p′, E1, E2) ≥ n. This happens only when the variance
ν ′(p, E1, E2) > 0.

“⇐” If there is a non-empty process p, for which p(◦K) = p(K◦), we can com-
pose a process p′ = p◦p◦· · ·◦p, where p is repeated n times. Furthermore,
if the variance ν ′(p, E1, E2) > 0, then the variance of ν ′(p′, E1, E2) ≥ n,
yielding σ(E1, E2) = ω.

4.3 b) The unweighted synchronic distance is ω. As the events e1 and e3 are in always
in conflict when enabled, a process p exists where there are two occurrences
of events in E1 and only one occurrence of event in E2.

We can assign weights of 2 to events e3 and e6. Then σ(E1, E2) = 2. The
computation was performed with the unrealiable method presented in 4.1(h),
utilizing the Maria reachability analyzer.

4.4 In both cases, the main task is to transform the formulae into one of the forms
presented in 4.5(d).

a) First, write the fact in propositional logic and then transform the formula
until in correct form:

(¬sum ∧ ¬win) → (spr ∨ aut)
⇔ ¬(¬sum ∧ ¬win) ∨ (spr ∨ aut)
⇔ ¬¬(sum ∨ win) ∨ (spr ∨ aut)
⇔ sum ∨ win ∨ spr ∨ aut

The last formula corresponds to a fact which is represented as an event
with no preconditions and all conditions of the system as postconditions.

b)

sum → (¬win ∧ ¬aut)
⇔ ¬sum ∨ (¬win ∧ ¬aut)
⇔ (¬sum ∨ ¬win) ∧ (¬sum ∨ ¬aut)
⇔ ¬(sum ∧ win) ∧ ¬(sum ∧ aut)

The formula on the last line can be represented with two events. First
has summer and winter as preconditions, and the second has summer
and autumn as preconditions. Neither has postconditions.


