Model Checking

Javier Esparza and Stephan Merz

Lab. for Foundations of Computer Science, University of Edinburgh Institut für Informatik, Universität München

Program

9:00-10:00 Basics

A bit of history

A case study: the Needham-Schroeder protocol

Linear and branching time temporal logics

10:00-10:30 Model-checking LTL I

The automata-theoretic approach

10:30-11:00 Coffee Break

11:00–11:30 Model-checking LTL II

On-the-fly model checking

Partial-order techniques

11:30–12:30 Model-checking CTL

Basic algorithms

Binary Decision Diagrams

12:30-14:00 Lunch

14:00–15:30 Abstraction

Basics

Predicate Abstraction

15:30–16:00 Coffee Break

16:00–17:30 Infinite state spaces

Sources of infinity

Symbolic search

Accelerations and widenings

Basics

A bit of history

A case study: the Needham-Schroeder protocol

Linear and branching time temporal logics

A bit of history

Goal: automatic verification of systems

Prerequisites: formal semantics and specification language

In the beginning there were Input-Output Systems . . .

```
Total correctness = partial correctness + termination

Formal semantics: input-output relation

Specification language: first-order logic.
```

Late 60s: Reactive systems emerge . . .

```
Reactive systems do not "compute anything" 
Termination may not be desirable (deadlock!) 
Total correctness: safety + progress + fairness \dots 
Formal semantics: Kripke structures, transition systems (\sim automata) 
Specification language: Temporal logic
```

Temporal logic

Middle Ages: analysis of modal and temporal inferences in natural language.

Since yesterday she said she'd come tomorrow, she'll come today.

Beginning of the 20th century: Temporal logic is formalised

Primitives: always, sometime, until, since . . .

Prior: Past, present, and future. Oxford University Press, 1967

• 1977: Pnueli suggests to use temporal logic as specification language

Temporal formulas are interpreted on Kripke structures

A. Pnueli: The Temporal Logic of Programs. FOCS '77

"System satisfies property"
formalised as

Kripke structure is model of temporal formula

Automatising the verification problem

Given a reactive system S and a temporal formula ϕ , give an algorithm to decide if the system satisfies the formula.

- Late 70s, early 80s: reduction to the validity problem
 - 1. Give a proof system for checking validity in the logic (e.g. axiomatization)
 - 2. Extract from S a set of formulas F
 - 3. Prove that $F \rightarrow \phi$ is valid using the proof system

Did not work: step 3 too expensive

- Early 80s: reduction to the model checking problem
 - 1. Construct and store the Kripke structure K of $S \rightarrow \text{restriction to finite-state systems}$
 - 2. Check if K is a model of ϕ directly through the definition

Clarke and Emerson: Design and synthesis of synchronisation skeletons using branching time temporal logic. LNCS 131, 1981

Quielle and Sifakis: Specification and verification of concurrent systems in CESAR. 5th International Symposium on Programming, 1981

Making the approach work

State explosion problem: the number of reachable states grows exponentially with the size of the system

Late 80s, 90s: Attacks on the problem

Compress. Represent sets of states succinctly: Binary decision diagrams, unfoldings. Reduce. Do not generate irrelevant states: Stubborn sets, sleep sets, ample sets. Abstract. Aggregate equivalent states: Verification diagrams, process equivalences.

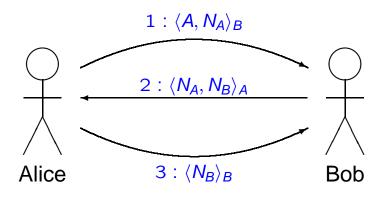
• 90s, 00s: Industrial applications

Considerable success in hardware verification (e.g. Pentium arithmetic verified)
Groups in all big companies: IBM, Intel, Lucent, Microsoft, Motorola, Siemens . . .
Many commercial and non-commercial tools: FormalCheck, PEP, SMV, SPIN . . .
Exciting industrial and academic jobs!

• 90s, 00s: Extensions: Infinite state systems, software model-checking

Case study: Needham-Schroeder protocol

Establish joint secret (e.g. pair of keys) over insecure medium



- secret represented by pair $\langle N_A, N_B \rangle$ of "nonces"
- messages can be intercepted
- assume secure encryption and uncompromised keys

Is the protocol secure?

Protocol analysis by model checking

Representation as finite-state system

Finite number of agents Alice, Bob, Intruder

Finite-state model of agents limit honest agents to single protocol run

one (pre-computed) nonce per agent

describe capabilities of intruder with limited memory

Simple network model shared communication channels

Simulate encryption pattern matching instead of computation

Protocol description in B(PN)² (Basic Petri Net Programming Notation)

Input language for the PEP tool

http://theoretica.informatik.uni-oldenburg.de/ pep/

B(PN)² model of honest agents

Model for Alice

```
begin
    nondeterministically choose partner
    < PartnerAKey'=KeyB OR PartnerAKey'=KeyI >;
    send initial message, modelled as a triple (key,d1,d2)
    < msg1!=PartnerKey AND msg2!=Alice AND msg3!=NonceA >;
    expect matching reply from partner
    < KeyA=msg1? AND NonceA=msg2? AND PartnerANonce'=msg3? >;
    send final message
    < msg1!=PartnerAKey AND msg2!=PartnerANonce AND msg3!=0 >;
    declare success
    < StatusA'=1 >
end
```

Similar model for Bob

$B(PN)^2$ model of intruder (1)

$B(PN)^2$ model of intruder (2)

```
[] do compose/fake initial message
        choose identity and nonce
        < Sender'=Alice OR Sender'=Bob OR Sender'=Intruder >;
        < (KnowNA=1 AND Nonce'=NonceA) OR
           (KnowNB=1 AND Nonce'=NonceB) OR
           Nonce'=NonceI >;
        < msq1!=KeyB AND msq2!=Sender AND msq3!=Nonce >; exit
     [ ] fake reply if NonceA is known
        choose nonce
        < (KnowNA=1 AND Nonce'=NonceA) OR
           (KnowNB=1 AND Nonce'=NonceB) OR
           Nonce'=NonceI >;
        < KnowNA=1 AND msg1!=KeyA AND msg2!=NonceA AND msg3!=Nonce >; exit
     [ ] fake acknowledgement if NonceB is known
        < KnowNB=1 AND msq1!=KeyB AND msq2!=NonceB AND msq3!=0 >; exit
     od; repeat
  od
end
```

Protocol analysis using PEP/The Model Checking Kit

Input

```
B(PN)<sup>2</sup> model of protocol
Property expressed as temporal logic formula
```

```
G\left(\textit{StatusA} = 1 \land \textit{StatusB} = 1 \Rightarrow (\textit{PartnerAKey} = \textit{KeyB} \Leftrightarrow \textit{PartnerBKey} = \textit{KeyA})\right)
```

Verification (Sun Ultra 60, 295 MHz, 1.5 GB)

Program automatically translated into Petri net: 130 places, 5461 transitions, 8279 reachable markings

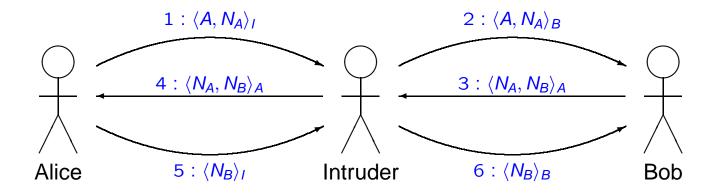
"Compressed" state space computed in about 2 minutes

Shortest run violating the property computed in about 2 seconds

Protocol bug

Alice (correctly) believes to talk with Intruder

Bob (incorrectly) believes to talk with Alice



Bug went undetected for 17 years

Three steps to model checking

1. Model abstraction of system under investigation

- reduce number of processes
- limit computational resources
- increase non-determinism
- coarser grain of atomicity

2. Validate model

- simulation ensures existence of certain executions
- check "obvious" properties

3. Run model checker for properties of interest

```
"true" property holds of model, and perhaps of system

"false" counterexample guides debugging of model and/or system

timeout review model, tune parameters of model checker
```

Kripke structures

Basic model of computation $\mathcal{K} = (S, I, \delta, AP, L)$

S system states (control, variables, channels)

 $I \subseteq S$ initial states

 $\delta \subseteq S \times S$ transition relation

AP atomic propositions over states

L: $S \rightarrow 2^{AP}$ (labels) labelling function

All states assumed to have at least one successor

K described in modelling language (e.g., B(PN)², Petri nets, process algebra)

Size of ${\mathcal K}$ usually exponential in size of description

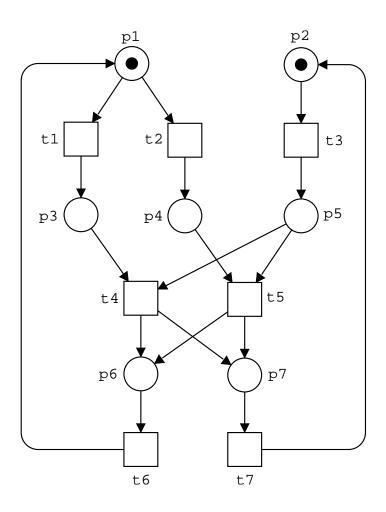
Petri net view

s reachable markings

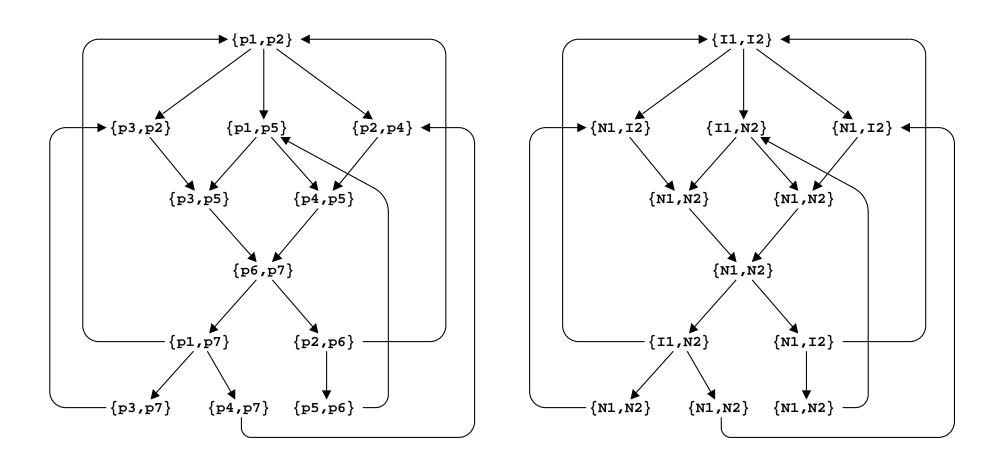
AP set of places

L(M) set of places marked at M

Example: Petri net



Example: Kripke structures



Computations of Kripke structures

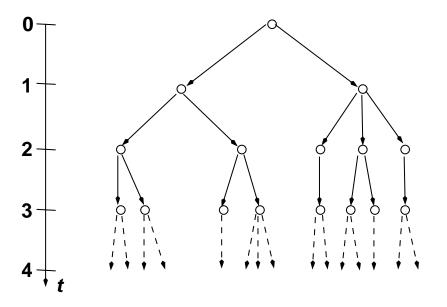
Computations of $\mathcal{K} = (S, I, \delta, AP, L)$

infinite sequences $L(s_0)L(s_1)\ldots \in S^{\omega}$ satisfying $s_0 \in I$ and $(s_i, s_{i+1}) \in \delta$

Petri net view

infinite sequences of markings M_0M_1 ... starting at an initial marking and obeying the firing rule

Computation tree $\,$ represents all computations of \mathcal{K}



nodes system states
edges transitions
paths computations
branching non-determinism
(e.g., interleaving)

Linear-time temporal logic (LTL)

Express time-dependent properties of system runs

Evaluated over infinite sequences of labels (computations or not)

type	formula	$\rho \models \varphi \text{ iff } \dots$
atomic	$p \in AP$	p holds of $ ho_0$
boolean	$\neg \varphi$	$\rho \not\models \varphi$
	$\varphi \lor \psi$	$\rho \models \varphi \text{ or } \rho \models \psi$
temporal	$\mathbf{X}arphi$	$\rho _1 \models \varphi$
	$\mathbf{F}\varphi$	$ ho _i \models arphi$ for some $i \in \mathbb{N}$
	$\mathbf{G}arphi$	$ ho _i \models arphi$ for all $i \in \mathbb{N}$
	$arphi$ until ψ , $arphi$ U ψ	there is $i\in\mathbb{N}$ such that $ ho _i\models\psi$
		and $\rho _j \models \varphi$ for all $0 \le j < i$
	$arphi$ unless ψ , $arphi$ W ψ	$ ho \models arphi$ until ψ or $ ho \models \mathbf{G} arphi$

System validity: $\mathcal{K} \models \varphi$ iff $\sigma \models \varphi$ for all computations of \mathcal{K}

LTL: examples

Invariants

GP

$$G \neg (crit_1 \land crit_2)$$
 mutual exclusion $G(preset_1 \lor ... \lor preset_n)$ deadlock freedom

Response, recurrence $G(P \Rightarrow F Q)$

$$G(P \Rightarrow F'Q)$$

$$G(\textit{try}_1 \Rightarrow F \textit{crit}_1)$$
 eventual access to critical section $G \ F \ \neg \textit{crit}_1$ no starvation in critical section

Reactivity, Streett $G F P \Rightarrow G F Q$

$$\operatorname{G}\operatorname{F} P\Rightarrow\operatorname{G}\operatorname{F} \mathsf{Q}$$

$$G F(try_1 \land \neg crit_2) \Rightarrow G F crit_1$$
 strong fairness

Precedence

$$G(P_1 \text{ unless } \dots \text{ unless } P_n)$$

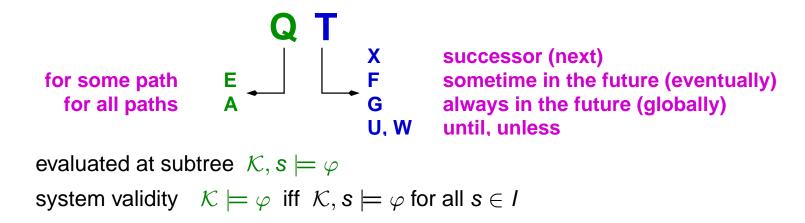
$$G(try_1 \land try_2 \Rightarrow \neg crit_2 \ W \ crit_2 \ W \ \neg crit_2 \ W \ crit_1)$$
 1-bounded overtaking

Branching-time temporal logic

Include assertions about branching behavior

combine temporal modalities and quantification over paths

Example: CTL Computation Tree Logic



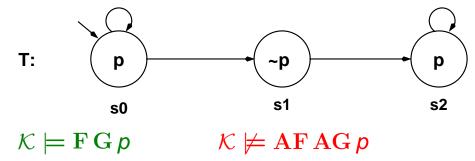
Possibility properties

AG EF init home state, resettability

Linear vs. branching time

Incomparable expressiveness of LTL and CTL

- LTL cannot express possibility properties
- CTL cannot express F G p



- implications on complexity of model checking

Choose your logic depending on problem requirements

More expressive logics: CTL*, μ -calculus

Model-checking LTL I

The automata-theoretic approach

Büchi automata

Finite automata operating on ω -words $\mathcal{B} = (Q, I, \delta, F)$

```
\begin{array}{ll} Q & \text{finite set of states} \\ I \subseteq Q & \text{initial states} \\ \delta \subseteq Q \times \Sigma \times Q & \text{transition relation} \\ F \subseteq Q & \text{accepting states} \end{array}
```

same structure as finite automaton

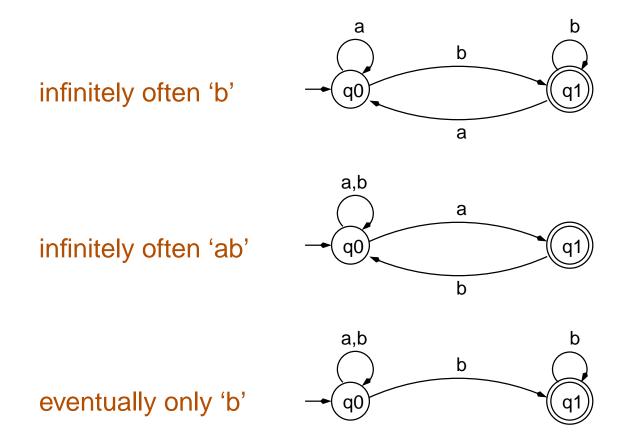
Run of \mathcal{B} on ω -word $a_0a_1\ldots\in\Sigma^\omega$

```
sequence q_0 \xrightarrow{a_0} q_1 \xrightarrow{a_1} q_2 \cdots
initialization q_0 \in I
consecution (q_i, a_i, q_{i+1}) \in \delta for all i \in \mathbb{N}
accepting q_i \in F for infinitely many i \in \mathbb{N}
```

ω -language defined by ${\cal B}$

```
\mathcal{L}(\mathcal{B}) = \{ w \in \Sigma^{\omega} : \mathcal{B} \text{ has some accepting run on } w \}
\omega-regular languages class of (\omega-)languages definable by Büchi automata
```

Büchi automata: examples



not definable by deterministic Büchi automaton

Büchi automata: basic properties

Decidability of emptiness problem

$$\mathcal{L}(\mathcal{B}) \neq \emptyset$$
 iff exist $q_0 \in I, q \in F$ such that $q_0 \stackrel{\Sigma^*}{\Longrightarrow} q \stackrel{\Sigma^+}{\Longrightarrow} q$ complexity linear in $|Q|$ (NLOGSPACE)

Closure properties

- union standard NFA construction
- intersection "marked" product
- complement difficult construction $O(2^{n \log n})$ states
- projection $\Sigma \to \Sigma'$

Other kinds of ω -automata

Generalized Büchi automata $\mathcal{B} = (Q, I, \delta, \{F_1, \dots, F_n\})$

- run accepting iff infinitely many $q_i \in F_k$, for all k
- can be coded as a Büchi automaton with additional counter (mod n)
- intersection definable via product automaton

Muller automata $\mathcal{M} = (Q, I, \delta, \mathcal{F})$

- run accepting iff set of states attained infinitely often $\in \mathcal{F}$
- special case: Streett automata, can be exponentially more succinct than Büchi automata

Alternating automata

- transition relation $\delta \subseteq Q \times \Sigma \times 2^Q$
- several states can be simultaneously active
- unifying framework for encoding linear-time and branching-time logics

From LTL to (generalized) Büchi automata

Basic insight

- Let $\mathcal{L}(\varphi)$ be the set of sequences of labels satisfying ϕ
- Construct automaton \mathcal{B}_{φ} that accepts precisely $\mathcal{L}(\varphi)$ Alphabet of \mathcal{B}_{φ} is 2^{AP}

Idea of construction

states

initial states

transition relation

sets of subformulas of φ intended to be true at the next position in the sequence of states containing φ

ensures satisfaction of non-temporal formulas in source state

replaces temporal formulas in source by others in target

temporal formulas decomposed according to recursion laws

$$\mathbf{G}\,\varphi \equiv \varphi \wedge \mathbf{X}\,\mathbf{G}\,\varphi$$

$$\mathbf{F} \varphi \equiv \varphi \vee \mathbf{X} \mathbf{F} \varphi$$

 φ until $\psi \equiv \psi \vee (\varphi \wedge \mathbf{X}(\varphi \text{ until } \psi))$

accepting states

defined from "eventualities" $\mathbf{F}\, \varphi$ or φ until ψ

Example: $G(p \Rightarrow Fq)$

Subformulas

$$\{\mathrm{G}(
ho\Rightarrow\mathrm{F}\,q)\ ,\
ho\Rightarrow\mathrm{F}\,q\ ,\
ho\ ,\ \mathrm{F}\,q\ ,\ q\}\cup \mathsf{negations}$$

Examples of states

$$\{G(p \Rightarrow Fq), p \Rightarrow Fq, \neg p, Fq, q\}$$

 $\{\neg(G(p \Rightarrow Fq)), p \Rightarrow Fq, p, Fq, \neg q\}$
 $\{\neg(G(p \Rightarrow Fq)), \neg(p \Rightarrow Fq), p, \neg Fq, \neg q\}$

Example of transitions

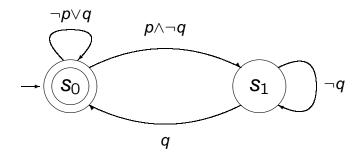
$$\{\mathbf{G}(\rho\Rightarrow\mathbf{F}\,q),\rho\Rightarrow\mathbf{F}\,q,\neg\rho,\mathbf{F}\,q,q\}\xrightarrow{\{\neg\rho,q\}}\{\mathbf{G}(\rho\Rightarrow\mathbf{F}\,q),\rho\Rightarrow\mathbf{F}\,q,\rho,\mathbf{F}\,q,\neg q\}$$

Sets of final states

States containing $\neg \mathbf{F} p$ or p

States containing $\neg(G(\rho \Rightarrow F q)) \equiv F \neg(\rho \Rightarrow F q)$ or $\neg(\rho \Rightarrow F q)$

Result for the example (improved construction)



Complexity

- worst case: \mathcal{B}_{arphi} exponential in length of arphi
- improved constructions try to avoid exponential blow-up

Application LTL decision procedure

- $-\varphi$ satisfiable iff $\mathcal{L}(\mathcal{B}_{\varphi}) \neq \emptyset$
- exponential complexity (PSPACE)

Model Checking

Problem Given \mathcal{K} and φ , decide whether $\mathcal{K} \models \varphi$

Automata-theoretic solution

Consider K as ω -automaton with all states final

Define $\mathcal{L}(\mathcal{K})$ = set of computations of \mathcal{K}

$$\mathcal{K} \models \varphi$$
 iff
 $\mathcal{L}(\mathcal{K}) \subseteq \mathcal{L}(\varphi)$
 iff
 $\mathcal{L}(\mathcal{K}) \cap \mathcal{L}(\neg \varphi) = \emptyset$
 iff
 $\mathcal{L}(\mathcal{K} \times \mathcal{B}_{\neg \varphi}) = \emptyset$

Complexity $O(|\mathcal{K}| \cdot |\mathcal{B}_{\neg \varphi}|) = O(|\mathcal{K}| \cdot 2^{|\varphi|})$

State explosion

 $\mathcal{K} \times \mathcal{B}_{\neg \varphi}$ is too big to be computed effectively

Problems start around 10⁶ states

Solutions

- Reduce: ignore irrelevant portions of $\mathcal{K} \times \mathcal{B}_{\neg \varphi}$
- Compress: construct compact representation of $\mathcal{K} \times \mathcal{B}_{\neg \varphi}$
- Abstract: see section on abstraction

Model-checking LTL II

On-the-fly model checking

Partial-order techniques

On-the-fly LTL model checking

Basic insight

- Construct only reachable states of K × $\mathcal{B}_{\neg \varphi}$
- Stop if a word in $\mathcal{L}(\mathcal{K} \times \mathcal{B}_{\neg \varphi})$ (acceptance cycle) is found

Setup

- Consider pairs (s,q) of states of $\mathcal K$ and $\mathcal B_{\neg\varphi}$

```
initial pairs both components initial successors joint execution of \mathcal{K} and \mathcal{B}_{\neg\varphi} accepting pairs second component accepting for \mathcal{B}_{\neg\omega}
```

"On-the-fly" search for acceptance cycles [Courcoubetis et al 1992]

- depth-first search for accepting pair reachable from itself
- interleave state generation and search for cycle
- stack of pairs whose successors need to be explored (contains counterexample)
- hashtable of pairs already seen (in current search mode)

On-the-fly LTL model checking

```
dfs(boolean search cycle) {
   p = top(stack);
   foreach (q in successors(p)) {
      if (search cycle and (q == seed))
         report acceptance cycle and exit;
      if ((q, search_cycle) not in visited) {
         enter (q, search cycle) into visited;
         push q onto stack;
         dfs(search_cycle);
         if (not search_cycle and (q is accepting)) {
            seed = q; dfs(true);
   pop(stack);
// initialization
visited = emptyset(); stack = emptystack(); seed = null;
foreach initial pair p {
   push p onto stack;
   enter (q, false) into visited;
   dfs(false)
```

Partial-order reduction (Petri net view)

Transitions t, u are independent if $({}^{\bullet}t \cup t^{\bullet}) \cap ({}^{\bullet}u \cup u^{\bullet}) = \emptyset$ Examples

- assignments to different variables of values that do not depend on the other variable
- sending and receiving on a channel that is neither empty nor full

Idea: avoid exploring independent transitions . . .

... is correct if the property cannot distinguish their order and every transition is eventually considered

... may lead to exponential reduction in part of system explored

Practical issues

Select at each new state an appropriate subset of the enabled transitions

Selecting a smallest subset is untractable

Linear or quadratic suboptimal algorithms

Different techniques: stubborn sets, sleep sets, ample sets

Stubborn sets

A set *U* of transitions is stubborn at a marking *M* if

- for every $t \in U$, and every $\sigma \in (T \setminus U)^*$

$$M \xrightarrow{\sigma t} M'$$
 implies $M \xrightarrow{t\sigma} M'$

- either no transition is enabled at M, or there is $t \in U$ such that for every $\sigma \in (T \setminus U)^*$

$$M \xrightarrow{\sigma} \text{implies } M \xrightarrow{\sigma t} M'$$

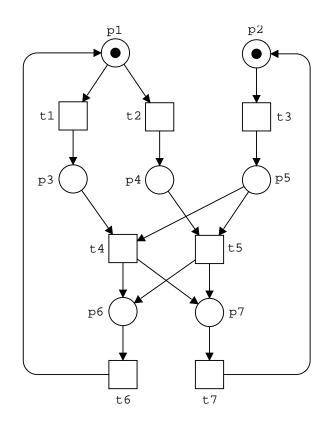
Reduced transition systems constructed using stubborn sets contain all deadlock states and preserve existence of infinite paths

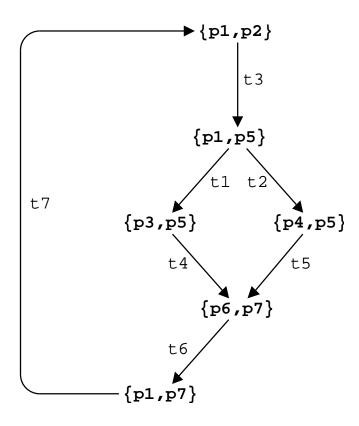
Efficiently constructing a stubborn set at a marking *M*:

- start with $U = \{t\}$ for some t enabled at M
- if $t \in U$ and t enabled, then add $(^{\bullet}t)^{\bullet}$ (or $^{\bullet}(^{\bullet}t)$) to U
- if $t \in U$ and t not enabled, then take $p \in {}^{\bullet}t$ such that M(p) = 0 and add ${}^{\bullet}p$ to U

More complicated definitions for preservation of LTL properties

Examples





Deadlock freedom can be decided by exploring only six states

Needham-Schroeder: property checked by PROD after examining 942 states (out of 8279)

Partial-order compression (Petri net view)

Based on "true concurrency" theory

Unfolding of a Petri net

Obtained through "unrolling"

Acyclic, possibly infinite net

Equivalent to the original net for all sensible equivalence notions

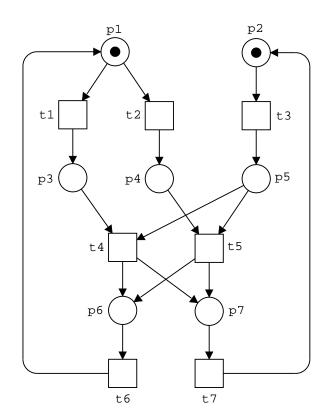
Checking procedure for a property φ

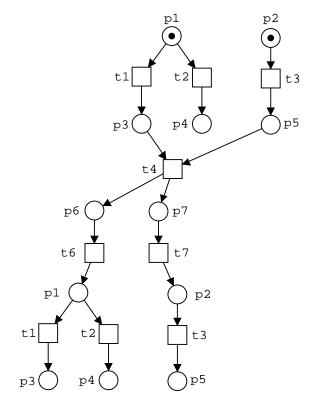
Generate a Petri net $N \times \mathcal{B}_{\neg \varphi}$ with "final places"

Generate a finite prefix of the unfolding of $N \times \mathcal{B}_{\neg \varphi}$ to decide if $\mathcal{L}(N \times \mathcal{B}_{\neg \varphi}) = \emptyset$

Prefix can be exponentially more compact than $\mathcal{K} imes \mathcal{B}_{\neg \varphi}$

Examples





Needham-Schroeder: prefix with 3871 events

Model Checking CTL

Basic Algorithms

Binary Decision Diagrams

Computation Tree Logic (CTL)

Branching structure and temporal modalities

type	formula $arphi$	$\mathcal{K}, s_0 \models \varphi \text{ iff } \dots$
atomic	$p \in AP$	p holds of s_0
propositional	$\neg \varphi$	$\mathcal{K}, s_0 \not\models \varphi$
	$\varphi \lor \psi$	$\mathcal{K}, s_0 \models \varphi \text{ or } \mathcal{K}, s_0 \models \psi$
temporal	$\mathbf{EX}arphi$	exists path $s_0s_1\dots$ s.t. $\mathcal{K}, s_1 \models \varphi$
	$\mathbf{AF}\varphi$	for all paths $s_0s_1\ldots$ exists $i\in\mathbb{N}$ s.t. $\mathcal{K},s_i\models \varphi$
	$\varphi ~\mathbf{EU} ~\psi$	exists path $s_0s_1\dots$ and $i\in\mathbb{N}$ s.t. $\mathcal{K},s_i\models\psi$
		and K , $s_j \models \varphi$ for all $0 \leq j < i$
	$\mathbf{AX}arphi$, $\mathbf{EF}arphi$,	similar

invariants $AG \neg (crit_1 \land crit_2)$

home state, resettability AGEF reset

CTL model checking

Idea: label states with formulas they satisfy

Recall system validity:

$$\mathcal{K} \models \varphi \quad \text{iff} \quad \mathcal{K}, s \models \varphi \quad \text{for all } s \in I$$

$$\text{iff} \quad I \subseteq \llbracket \varphi \rrbracket_{\mathcal{K}}$$
 where
$$\llbracket \varphi \rrbracket_{\mathcal{K}} =_{\text{def}} \{ s \in S \mid \mathcal{K}, s \models \varphi \}$$

Model checking requires:

- algorithm to compute $[\![\varphi]\!]_{\mathcal{K}}$
- data structures to represent and manipulate sets of states

Bottom-up calculation of $\llbracket \varphi \rrbracket_{\mathcal{K}}$

Observation: all CTL formulas definable from EX, EG, and EU, e.g.

$$\mathbf{AX}\, \varphi \equiv \neg \, \mathbf{EX}\, \neg \varphi$$
 $\mathbf{EF}\, \varphi \equiv \mathbf{true}\, \, \mathbf{EU}\, \varphi$
 $\mathbf{AG}\, \varphi \equiv \neg \, \mathbf{EF}\, \neg \varphi$ $\mathbf{AF}\, \varphi \equiv \neg \, \mathbf{EG}\, \neg \varphi$

simple cases: reformulation of CTL semantics

$$\llbracket p \rrbracket_{\mathcal{K}} \ = \ \{ s \in \mathcal{S} \mid p \in L(s) \} \quad \text{for } p \in AP$$

$$\llbracket \neg \psi \rrbracket_{\mathcal{K}} \ = \ \mathcal{S} \setminus \llbracket \psi \rrbracket_{\mathcal{K}}$$

$$\llbracket \psi_1 \vee \psi_2 \rrbracket_{\mathcal{K}} \ = \ \llbracket \psi_1 \rrbracket_{\mathcal{K}} \cup \llbracket \psi_2 \rrbracket_{\mathcal{K}}$$

$$\llbracket \mathbf{EX} \psi \rrbracket_{\mathcal{K}} \ = \ \delta^{-1}(\llbracket \psi \rrbracket_{\mathcal{K}}) \ =_{\mathsf{def}} \ \{ \ s \in \mathcal{S} \mid t \in \llbracket \psi \rrbracket_{\mathcal{K}} \text{ for some } t \text{ s.t. } (s, t) \in \delta \ \}$$

missing cases: $[\![\mathbf{EG}\,\varphi]\!]_{\mathcal{K}}$, $[\![\varphi\,\mathbf{EU}\,\psi]\!]_{\mathcal{K}}$

Calculation of $\llbracket \mathbf{EG} \varphi \rrbracket_{\mathcal{K}}$

Observe recursion law

$$\mathbf{EG} \varphi \equiv \varphi \wedge \mathbf{EX} \mathbf{EG} \varphi$$

In fact:

 $\llbracket \operatorname{EG} \varphi \rrbracket_{\mathcal{K}}$ is the greatest "solution" of $X = \llbracket \varphi \rrbracket_{\mathcal{K}} \cap \delta^{-1}(X)$ in $(2^{\mathcal{S}}, \subseteq)$

Proof.

- Recursion law implies that $[\![\mathbf{EG}\,\varphi]\!]_{\mathcal{K}}$ is a solution.
- Assume $M = [\![\varphi]\!]_{\mathcal{K}} \cap \delta^{-1}(M)$ for $M \subseteq S$, show $M \subseteq [\![\mathbf{EG} \varphi]\!]_{\mathcal{K}}$. Assume $s_0 \in M$.
 - 1. $s_0 \in \llbracket \varphi \rrbracket_{\mathcal{K}}$ implies $\mathcal{K}, s_0 \models \varphi$.
 - 2. $s_0 \in \delta^{-1}(M)$ implies there is $s_1 \in M$ s.t. $(s_0, s_1) \in \delta$.

Inductively obtain path s_0, s_1, \ldots of states satisfying φ .

This proves $\mathcal{K}, s_0 \models \mathbf{EG} \varphi$ and thus $s_0 \in [\![\mathbf{EG} \varphi]\!]_{\mathcal{K}}$.

Calculation of fixed point

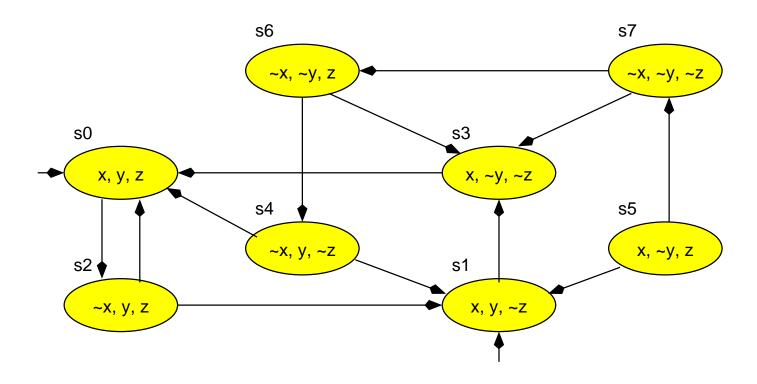
Kleene's fixed point theorem implies:

 $[\![\mathbf{EG}\,\varphi]\!]_{\mathcal{K}}$ can be computed as the limit of

$$S, \ \pi(S), \ \pi(\pi(S)), \ \dots \qquad ext{for} \ \pi: \left\{egin{array}{l} 2^S
ightarrow 2^S \ X
ightarrow \llbracket arphi
rbracket_{\mathcal{K}} \cap \delta^{-1}(X) \end{array}
ight.$$

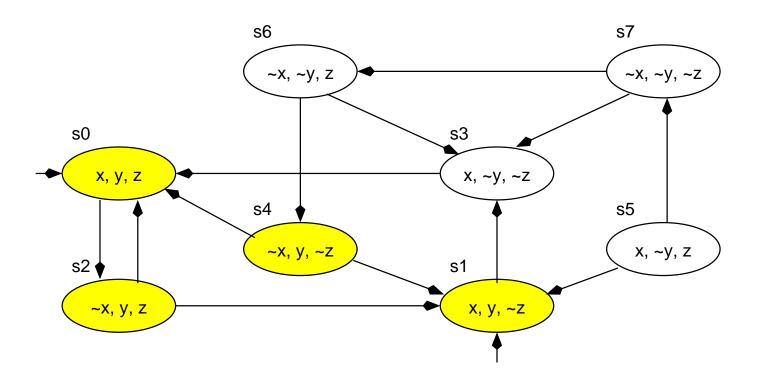
Convergence: obvious, because S is finite

Computation of greatest fixed point (1)



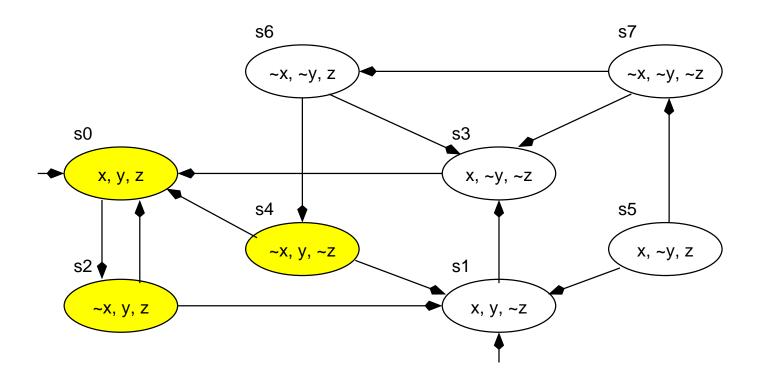
$$\pi^0(S) = S$$

Computation of greatest fixed point (2)



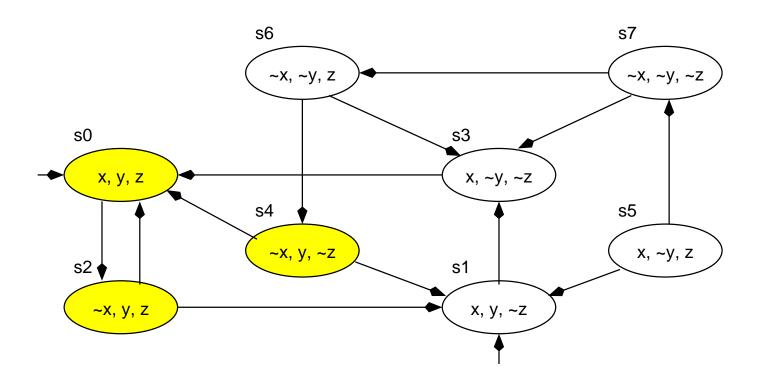
$$\pi^1(S) = [y]_{\mathcal{K}} \cap \delta^{-1}(S)$$

Computation of greatest fixed point (3)



$$\pi^2(S) = [y]_{\mathcal{K}} \cap \delta^{-1}(\pi^1(S))$$

Computation of greatest fixed point (4)



$$\pi^{3}(S) = [y]_{\mathcal{K}} \cap \delta^{-1}(\pi^{2}(S)) = \pi^{2}(S): [EG y]_{\mathcal{K}} = \{s_{0}, s_{2}, s_{4}\}$$

Calculation of $\llbracket \varphi \text{ EU } \psi \rrbracket_{\mathcal{K}}$

Similarly:

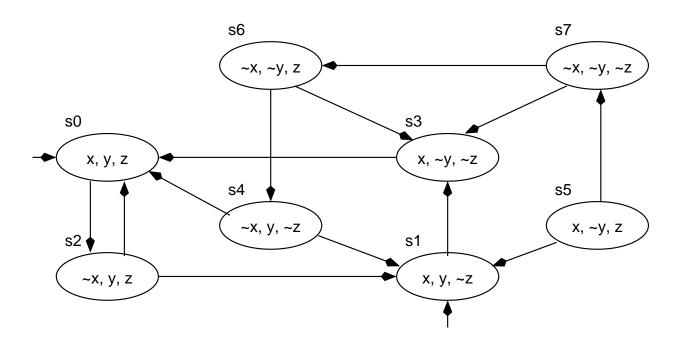
$$\varphi \to \Psi = \psi \vee (\varphi \wedge \to \Psi)$$

$$\llbracket \varphi \to \Psi \rrbracket_{\mathcal{K}}$$
 is the smallest solution of $X = \llbracket \psi \rrbracket_{\mathcal{K}} \cup (\llbracket \varphi \rrbracket_{\mathcal{K}} \cap \delta^{-1}(X))$

Computation: calculate the limit of

$$\emptyset, \ \pi(\emptyset), \ \pi(\pi(\emptyset)), \ \dots \qquad \text{for} \ \ \pi: \left\{ egin{array}{l} 2^{\mathbb{S}}
ightarrow 2^{\mathbb{S}} \ X \mapsto \llbracket \psi
rbracket_{\mathcal{K}} \cap \delta^{-1}(X)) \end{array}
ight.$$

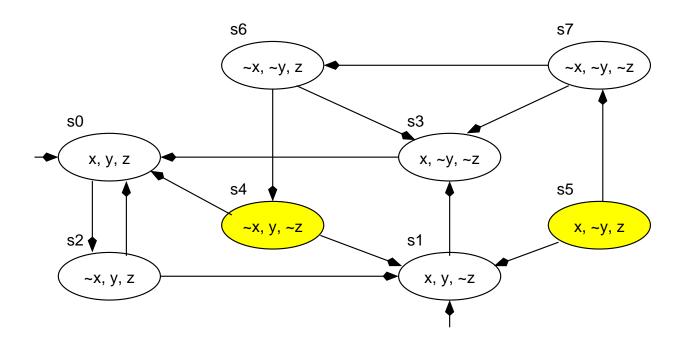
Computation of least fixed point (1)



$$\pi^0(\emptyset) = \emptyset$$

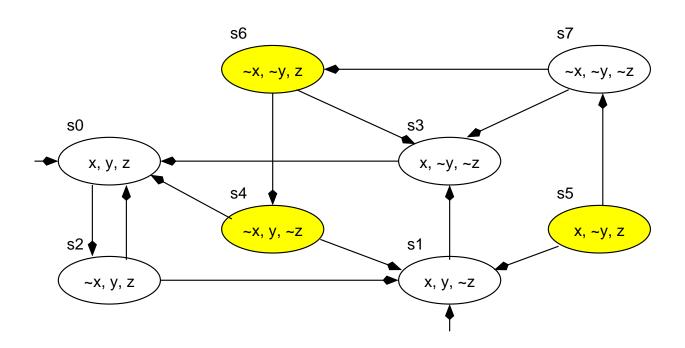
Computation of least fixed point (2)

Compute $[EF((x = z) \land (x \neq y))]$



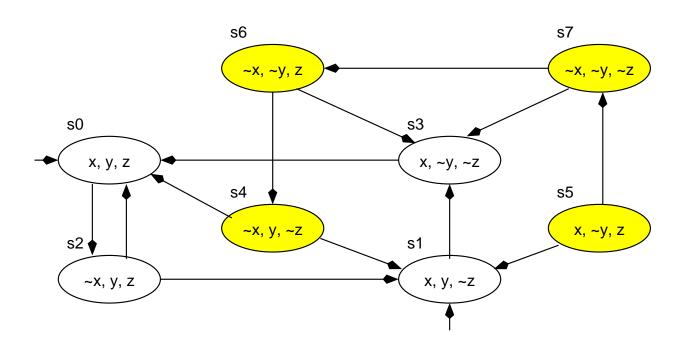
$$\pi^{1}(\emptyset) = [(x = z) \land (x \neq y)]_{\mathcal{K}} \cup \delta^{-1}(\emptyset)$$

Computation of least fixed point (3)



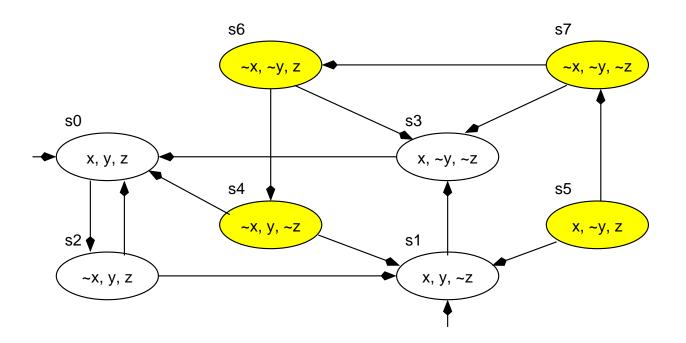
$$\pi^2(\emptyset) = [(x = z) \land (x \neq y)]_{\mathcal{K}} \cup \delta^{-1}(\pi^1(\emptyset))$$

Computation of least fixed point (4)



$$\pi^3(\emptyset) = [(x = z) \land (x \neq y)]_{\mathcal{K}} \cup \delta^{-1}(\pi^2(\emptyset))$$

Computation of least fixed point (5)



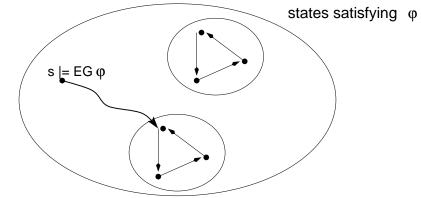
$$\pi^{4}(\emptyset) = [(x = z) \land (x \neq y)]_{\mathcal{K}} \cup \delta^{-1}(\pi^{3}(\emptyset)) = \pi^{3}(\emptyset):$$
$$[EF((x = z) \land (x \neq y))]_{\mathcal{K}} = \{s_{4}, s_{5}, s_{6}, s_{7}\}$$

Complexity issues

Complexity of fixed point algorithm: $O(|\varphi| \cdot |S| \cdot (|S| + |\delta|))$

Improved algorithm [Clarke, Emerson, Sistla 1986]

- Computation of $[\![\mathbf{EG}\,\varphi]\!]_{\mathcal{K}}$
 - 1. restrict ${\cal K}$ to states satisfying φ
 - 2. compute SCCs of restricted graph
 - 3. find states from which some SCC is reachable, using backward search



- Computation of $[\![\varphi \ \mathbf{E} \mathbf{U} \ \psi]\!]_{\mathcal{K}}$ can similarly be reduced to backward search

Complexity: $O(|\varphi| \cdot (|S| + |\delta|))$ linear in size of model and formula

Fairness constraints

Recall limited expressiveness of CTL: fairness conditions not expressible

Instead: modify semantics and model checking algorithm

FairCTL: exclude "unfair" paths, e.g.

```
\mathcal{K}, s_0 \models \mathbf{EG_f} \varphi iff there exists fair path s_0, s_1, \ldots s.t. \mathcal{K}, s_i \models \varphi for all i \mathcal{K}, s_0 \models \mathbf{AG_f} \varphi iff \mathcal{K}, s_i \models \varphi holds for all fair paths s_0, s_1, \ldots and all i
```

Fairness conditions specified by additional constraints

SMV: indicate CTL formulas that must hold infinitely often along a fair path

Key property: suffix closure

```
path s_0, s_1, s_2, \ldots is fair iff s_n, s_{n+1}, s_{n+2}, \ldots is fair (for all n)
```

Model checking FairCTL

Observe: EG_f true holds at s iff there is some fair path from s

Suffix closure ensures

```
\mathbf{EX}_{\mathsf{f}} \varphi \equiv \mathbf{EX}(\varphi \wedge \mathbf{EG}_{\mathsf{f}} \, \mathsf{true})
\varphi \, \mathbf{EU}_{\mathsf{f}} \, \psi \equiv \varphi \, \mathbf{EU} \, (\psi \wedge \mathbf{EG}_{\mathsf{f}} \, \mathsf{true})
```

Therefore: need only modify algorithm to compute $[\![\mathbf{EG_f}\varphi]\!]_{\mathcal{K}}$

assume k SMV-style fairness constraints: $\psi_1 \wedge \ldots \wedge \psi_k$

- 1. restrict ${\cal K}$ to states satisfying φ
- 2. compute SCCs of restricted graph
- 3. remove SCCs that do not contain a state satisfying ψ_i , for some j
- 4. $[\![\mathbf{EG}_{\mathsf{f}}\,\varphi]\!]_{\mathcal{K}}$ consists of states from which some (fair) SCC is reachable

Complexity: $O(|\varphi| \cdot (|S| + |\delta|) \cdot k)$ still linear in the size of the model

Symbolic CTL model checking

Compress: data structures for model checking algorithm

compact representation of sets $[\![\varphi]\!]_{\mathcal{K}} \subseteq \mathcal{S}$ and relation $\delta \subseteq \mathcal{S} \times \mathcal{S}$

Operations required

Boolean operations on sets union, intersection, complement

- inverse image operation $\delta^{-1}(M)$

comparison
 detect termination of fixed point computation

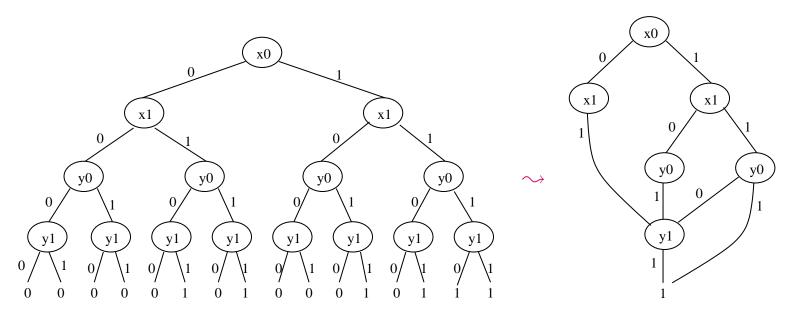
BDDs (binary decision diagrams) [Bryant 1986]

- widely used data structure for boolean functions
- compact, canonical dag representation of binary decision trees
- can represent large sets of regular structure

Compact set representations

Assume states are valuations of Boolean variables x_0 , x_1 , y_0 , y_1 Example: set of states such that sum $x_1x_0 \oplus y_1y_0$ produces carry

- explicit enumeration $\{\overline{x_0}x_1\overline{y_0}y_1, \overline{x_0}x_1y_0y_1, x_0\overline{x_1}y_0y_1, x_0x_1\overline{y_0}y_1, x_0x_1y_0\overline{y_1}, x_0x_1y_0y_1\}$
- decision tree set elements correspond to paths leading to 1
- BDD dag obtained by removing redundant nodes and sharing equal subtrees



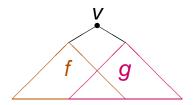
BDD implementation

Constructors

- constant BDDs true, false

1 0

- inner nodes BDD(v, f, g)



Observe global invariants:

- along any path, variables occur in same order (if at all)
- subdags of inner node are always distinct
- avoid reallocation of equivalent BDD nodes (use hash table)

Therefore:

- BDD uniquely determined by Boolean function
- equivalence checking reduces to testing pointer equality

Boolean operations for BDDs

basic operation $ite(f,g,h) = (f \wedge g) \vee (\neg f \wedge h)$ "if _ then _ else _"

all Boolean connectives definable from ite and constants

recursive computation

Cofactor $f|_{v=\text{true}}$, $f|_{v=\text{false}}$ for v at most head variable of f equals left or right sub-dag of f if v is head variable, otherwise equals f

Complexity: $O(|f| \cdot |g| \cdot |h|)$ if recomputation is avoided by hashing

BDD implementation: quantifiers

projection
$$(\exists x : \varphi) = (\varphi|_{x=\text{true}} \lor \varphi|_{x=\text{false}})$$

quantification over head variable

```
\exists x : BDD(x, f, g)
= \exists x : (x \land f) \lor (\neg x \land g) [Def. BDD]
= (true \land f) \lor (\neg true \land g) \lor (false \land f) \lor (\neg false \land g) [note: x does not occur in f,g]
= f \lor g
```

general case: quantification over several variables

$$\exists \mathbf{x} : BDD(y, f, g) = \begin{cases} BDD(y, \exists \mathbf{x} : f, \exists \mathbf{x} : g) & \text{if } y \notin \mathbf{x} \\ (\exists \mathbf{x} : f) \lor (\exists \mathbf{x} : g) & \text{otherwise} \end{cases}$$

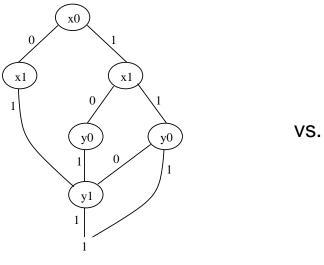
universal quantification: similar

Complexity: worst case exponential, but usually works well in practice

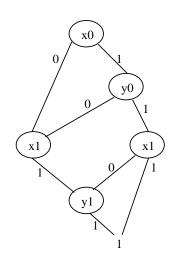
BDDs: variable ordering

Variable ordering can drastically affect BDD sizes

example:



exponential growth in *n*



linear growth in *n*

determining optimal variable ordering is NP-hard

Heuristics

- manual ordering cluster dependent variables
- automatic strategies based on steepest-ascent or similar techniques
- some structures (e.g. multipliers, queues) do not admit compact BDD representation

Symbolic CTL model checking: implementation

Symbolic representation

state space S vector of (Boolean) state variables x

initial states / BDD over x

- transition relation δ BDD over \mathbf{x}, \mathbf{x}' , perhaps split conjunctively

- sets $[\![\varphi]\!]_{\mathcal{K}}$ BDDs over x

Operations

set operations
 Boolean operations on BDDs

- pre-image $\delta^{-1}(M) = \exists \mathbf{x}' : \delta \wedge M'$

set comparison pointer comparison

Complexity can be exponential in size of BDD representing δ

Results

- systems with huge potential state spaces (10¹²⁰ states) have been analysed
- particularly successful for synchronous hardware with short data paths

Abstraction techniques

Basics

Predicate Abstraction

Extensions for liveness

State explosion problem

Exponential increase of reachable states with system size

Partial solutions

- reduce partial-order, symmetry: explore only relevant part of state space
- compress unfoldings, BDDs: efficient data structures

But: 10¹⁰⁰ potential states are generated by just 300 bits

What about larger systems?

- hardware register files, execution pipelines
- software usually unbounded state size

Ad hoc approach

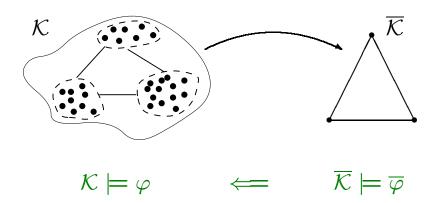
analyse small instances 2 cache lines, 3 potential data values, etc.

How do you make sure that you'll catch the bug?

Abstraction

Idea

- compute "abstract system" $\overline{\mathcal{K}}$ (finite, small)
- infer properties of \mathcal{K} from properties of $\overline{\mathcal{K}}$



Issues

- how to obtain and present abstract model?
- full automation or user interaction?
- what if $\overline{\mathcal{K}} \not\models \overline{\varphi}$ ("false negatives") ?

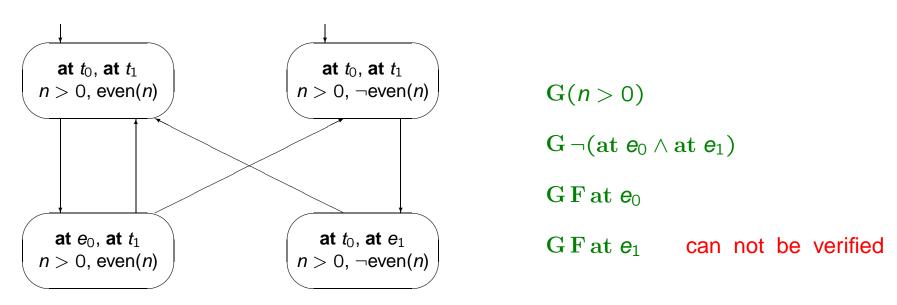
Predicate abstraction: abstraction determined by predicates over concrete state space

- predicates of interest indicated by the user
- subsumes other abstraction techniques
- intuitive presentation of abstract model

Example: dining mathematicians

mutual exclusion for two processes (synchronization via integer variable *n*)

abstract representation: control state, parity



Predicate diagrams

Fix set AP of atomic propositions

 \overline{AP} denotes set of propositions in AP and their negations

Presentation of abstraction as transition system $\overline{A} = (\overline{S}, \overline{I}, \overline{\delta})$

finite set $\overline{S} \subseteq 2^{\overline{AP}}$ of nodes (let $\overline{s} \in \overline{S}$ also denote conjunction of literals)

Verification conditions for correctness of abstraction

- initialization: initial nodes of $\overline{\mathcal{A}}$ cover initial states of \mathcal{K}

$$\bigvee_{\overline{s}\in\overline{I}}\overline{s} \Rightarrow \bigvee_{s\in I}L(s)$$

– consecution: transitions of $\overline{\mathcal{A}}$ cover possible transitions of \mathcal{K}

$$(\overline{s},\overline{t})\in \overline{\delta} \quad \text{if} \quad L(s)\Rightarrow \overline{s} \text{ and } L(t)\Rightarrow \overline{t} \text{ for some } (s,t)\in \delta$$

Note: extra initial states or transitions preserves correctness

Preservation of properties

Correctness of abstraction implies:

- all computations of $\mathcal K$ represented as computations of $\overline{\mathcal A}$
- properties of $\mathcal K$ can be inferred from those of $\overline{\mathcal A}$

$$\overline{\mathcal{A}} \models \varphi \implies \mathcal{K} \models \varphi$$
 for all LTL (actually, ACTL*) formulas φ over AP

 $-\overline{\mathcal{A}}\models \varphi$ established by model checking: consider atomic propositions as Boolean variables

$\overline{\mathcal{A}}$ may contain additional computations

- $-\overline{\mathcal{A}}\not\models\varphi$ need not imply $\mathcal{K}\not\models\varphi$
- counter example often suggests how to improve the abstraction
- spurious loops invalidate liveness properties (cf. "dining mathematicians")

Strengthening abstractions

- split nodes extend set AP of atomic propositions
- break cycles represent information for liveness properties

Generating predicate diagrams (1)

Correct abstraction by elimination

- assume K being given by initial condition *Init* and transition relation *Next*
- start with full graph over 2^{AP}
- remove node \overline{s} from \overline{I} if $\models Init \Rightarrow \neg \overline{s}$
- remove edge $(\overline{s},\overline{t})$ from $\overline{\delta}$ if $\models \overline{s} \land \textit{Next} \Rightarrow \neg \overline{t}'$

Implementation: use theorem prover

- try to prove implications using automatic tactic with limited resources
- many "local" goals instead of "global" property
- unproven implications: approximation, perhaps good enough
- drawback: $2^{|AP|}$ states, $2^{2|AP|}$ proof attempts

Optimized implementation in PVS

H. Saïdi and N. Shankar: Abstract and model check while you prove. [CAV'99, LNCS 1633]

Generating predicate diagrams (2)

Compute abstraction by symbolic evaluation

- reduce: generate only reachable abstract states
- compilation approach: borrow from abstract interpretation

Formally: Galois connection

Implementation

- rewrite $\overline{s} \wedge \textit{Next}$ into disjunction $\overline{t_1}' \vee \ldots \vee \overline{t_n}'$ of successor states
- sample rules for "dining mathematicians"

$$even(x), even(y) \Rightarrow even(x + y)$$
 $even(x), \neg even(y) \Rightarrow \neg even(x + y)$
 $x \in Nat, x > 0, even(x) \Rightarrow x \text{ div } 2 > 0$ $even(0)$ $\neg even(1)$

Example: bakery algorithm

Lamport's mutual-exclusion protocol (2 processes, "atomic" version)

```
int t_1=0,\,t_2=0 (* "queueing tickets" *)

loop

l_1: "noncritical section"; m_1: "noncritical section";

l_2: l_1:=t_2+1; l_3: await l_2=0 \lor l_1 \le l_2; l_4: "critical section"; l_4: "critical section"; l_5: l_4: "critical section"; l_5: l_4: "critical section"; l_5: l_5:
```

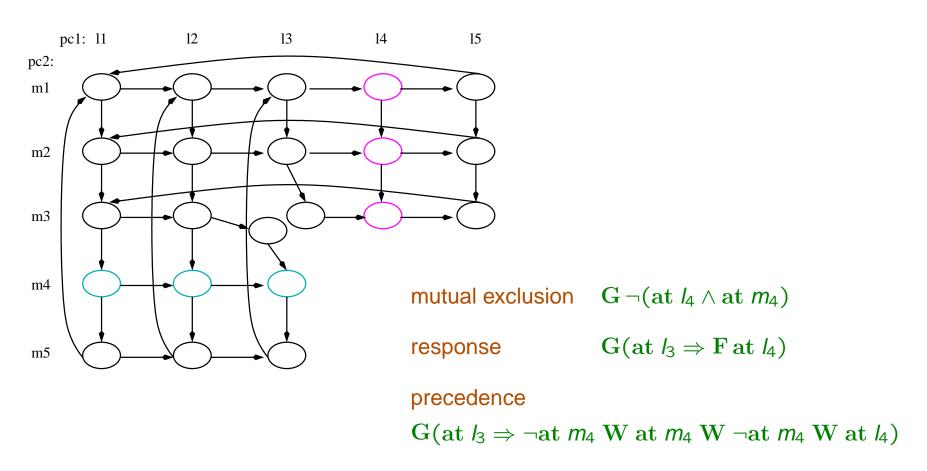
Note: ticket values can grow arbitrarily large

Predicates of interest

- control state
- $-t_1=0, t_2=0, t_1 < t_2$

Bakery: predicate diagram

Symbolic evaluation produces the following diagram (only control state indicated)



all properties verified from single diagram

Predicates on-the-fly

Symbolic evaluation can fail due to insufficient information

Bakery example: computing successors of

$$\overline{n} =_{\text{def}} \{ \text{at } l_3, \text{ at } m_3, t_1 \neq 0, t_2 \neq 0 \}$$

fails because guard $g \equiv t_1 \leq t_2$ cannot be evaluated

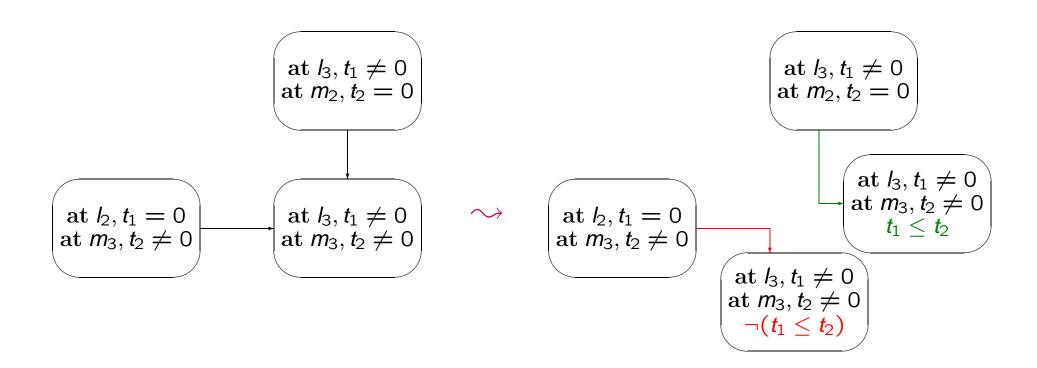
Solution: reconsider predecessors of \overline{n}

- for every predecessor \overline{m} in the diagram, try to establish

$$\overline{m} \wedge \mathsf{Next} \wedge \overline{n}' \; \Rightarrow \; \left\{ \begin{array}{c} g \\ \neg g \end{array} \right\}$$

- add $(\neg)g$ to the node label of \overline{n} as appropriate
- possibly split node \overline{n}

Predicates on-the-fly: Bakery example



Predicate $t_1 \leq t_2$ need not be supplied by the user

inferred predicates added precisely where necessary

Strengthening for liveness

Boolean abstractions often cannot prove liveness properties

- predicate diagram usually contains cycles that do not correspond to "concrete" computations
- "dining mathematicians" example: liveness for process 1 could not be verified

Standard techniques to establish liveness properties

- fairness conditions action taken infinitely often if sufficiently often enabled
- well-founded orderings exclude cycles that correspond to infinite descent

These need to be represented in the abstraction!

Representing fairness conditions

Annotate (some) transitions in $\overline{\delta}$ with actions $A \in Act$

- formally, transitions are now triples $\overline{\delta} \subseteq \overline{S} \times Act \times \overline{S}$
- assume actions are described by characteristic predicate over (x, x')

Correctness conditions $(\overline{s}, A, \overline{t}) \in \overline{\delta}$ implies:

- enabledness: action A is enabled at \overline{s}

$$\overline{s} \Rightarrow \exists x' : A$$

effect: represent all possible A-successors

$$\overline{s} \wedge A \Rightarrow \bigvee_{(\overline{s}, A, \overline{t}) \in \overline{\delta}} \overline{t}'$$

Model checking under fairness assumptions

Instrument abstract transition system $\overline{\mathcal{A}}$

add Boolean variables en_A and $taken_A$ for every action $A \in Act$:

- enabledness en_A true at states that have outgoing edge $(\overline{s}, A, \overline{t}) \in \overline{\delta}$
- execution taken_A true when previous transition may have been caused by A

Weaken property to prove

Deduce $\mathcal{K} \models \varphi$ from

$$\overline{\mathcal{A}} \models \bigwedge_{A \in Act} \left\{ \begin{array}{c} WF(A) \\ SF(A) \end{array} \right\} \Rightarrow \varphi$$

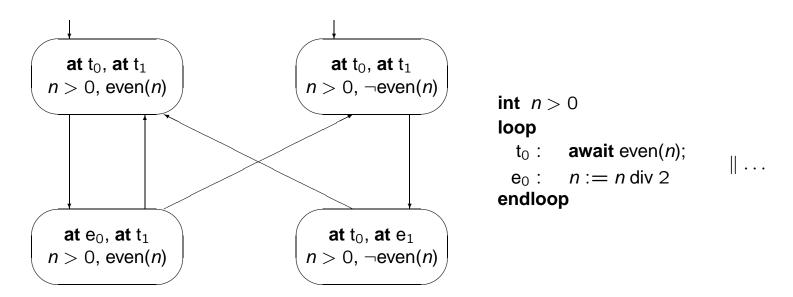
for actions $A \in Act$ with weak (resp., strong) fairness assumption where

$$WF(A) =_{def} FGen_A \Rightarrow GFtaken_A$$

$$SF(A) =_{def} GFen_A \Rightarrow GFtaken_A$$

Representing well-founded orderings

Reconsider "dining mathematicians"



No computation of "concrete" system cycles between left-hand nodes

n stays positive and even ...but is infinitely often divided by 2

Note: every finite-state abstraction must contain similar cycle!

Ordering annotations

Represent descent w.r.t. well-founded ordering in $\overline{\mathcal{A}}$

- let t be (concrete-level) term and \prec be well-founded ordering on domain of t
- label edge $(\overline{m}, A, \overline{n}) \in \overline{\delta}$ by (t, \prec) (resp., (t, \preceq)) if

$$\overline{m} \wedge A \wedge \overline{n}' \Rightarrow \left\{ \begin{array}{l} t' \prec t \\ t' \preceq t \end{array} \right\}$$

Use edge annotations in model checking

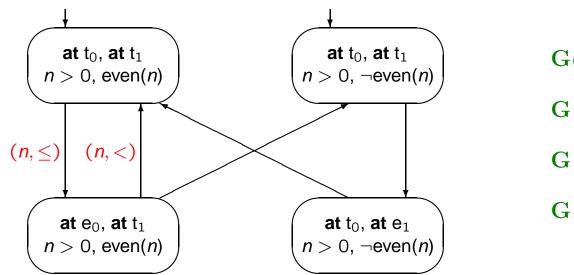
– exclude computations of $\overline{\mathcal{A}}$ that correspond to infinite descent of t in \mathcal{K} :

Deduce
$$\mathcal{K} \models \varphi$$
 from $\overline{\mathcal{A}} \models (G F "t' \prec t" \Rightarrow G F \neg "t' \preceq t") \Rightarrow \varphi$

- "t' < t" represented by auxiliary Boolean variables

Dining mathematicians completed

Diagram annotated with ordering information



$$G \neg (\text{at } e_0 \wedge \text{at } e_1)$$

GF at e_0

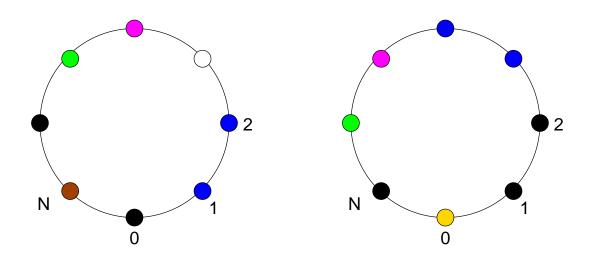
 $G F at e_1$ can not be verified also

Justification

- at t_0 ∧ even(n) ∧ Next ⇒ n' = n
- at $e_0 \wedge \text{even}(n) \wedge n > 0 \wedge \textit{Next} \Rightarrow n' = n \text{ div } 2$

Case study: self-stabilizing protocol

Dijkstra's algorithm for self-stabilization



var *v* : **array** [0 .. *N*] **of** [0 .. *M*]

$$v[0] = v[N] \longrightarrow v[0] := (v[0] + 1) \mod (M+1)$$

 $\begin{bmatrix} i < N \end{bmatrix} v[i+1] \neq v[i] \longrightarrow v[i+1] := v[i]$

Stable configurations: precisely one process can move

Protocol formalized in Isabelle

```
types
 proc = nat
 vals = nat
  state = proc => vals
consts
  N, M
                  :: nat
rules
                 "0 < N"
 N pos
               "N < M"
  M atleast N
constdefs
  Proc :: proc set
                                                  valid process IDs
           Proc \equiv \{i : i < N\}
            :: vals set
  Vals
                                                  valid register values
           Vals \equiv \{i : i \leq M\}
            act
           act i v w \equiv
              (case i of
                  0 = (v \ 0 = v \ N) \land (w \ 0 = (Suc \ (v \ 0)) \mod (Suc \ M))
                | Suc j => (v j \neq v (Suc j)) \land (w (Suc j) = v j))
              \wedge (\forall k. k \neq i \Rightarrow (w k = v k))
            :: [proc, state] => bool
                                                enabledness predicate
  enab
            enab i v \equiv \exists w. act i v \neq w
```

Idea of correctness

- 1. Once the ring has stabilized, it will remain stable.
- 2. Assume process 0's value v[0] is different from all other register values.
 - Process 0 cannot move until v[0] appears in register N.
 - -v[0] will eventually spread along the ring.
 - When v[0] has reached register N, the configuration is stable.
- 3. Some value $k \leq M$ does not occur in any register v[i+1].
 - Observe $N \leq M$ and use pigeonhole principle.
 - This value cannot be introduced into the ring except by an action of process 0.
 - Because every move disables that process, process 0 must make infinitely many moves.
 - Therefore its register will eventually contain k, and we have reached case 2.

Concepts for correctness formalized

prefix: initial ring segment with same register values

```
prefix :: state => proc set prefix v \equiv \{ i. i \in Proc \land (\forall j. j \le i \Rightarrow v j = v 0) \}
```

othVals: values of registers outside the prefix

```
othVals :: state => vals set othVals v \equiv v \cdot \cdot (Proc \setminus (prefix v))
```

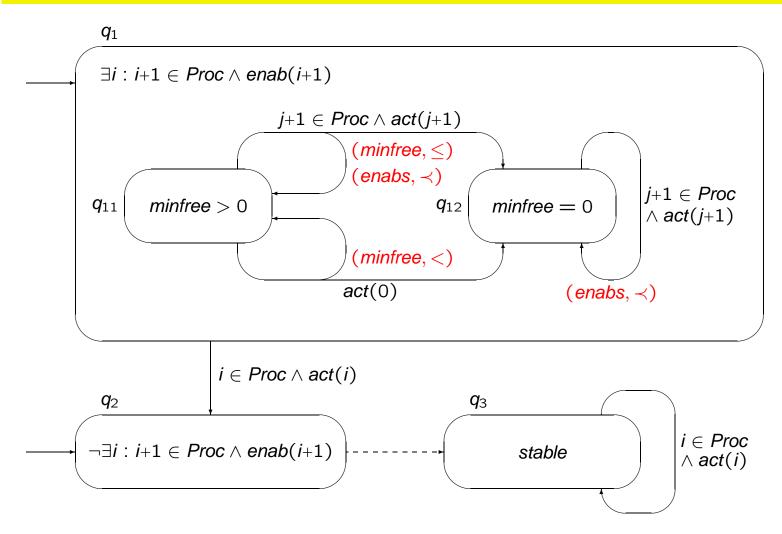
minfree: distance to least value not contained in oth Vals

```
\begin{array}{ll} \mbox{minfree} & :: \mbox{state} => \mbox{vals} \\ \mbox{minfree} \ v \equiv \mbox{LEAST n.} \ n \in \mbox{Vals} \\ \  \  \, \wedge \ (\mbox{v} \ 0 \ + \ n) \ \mbox{mod} \ (\mbox{Suc M}) \ \notin \mbox{othVals} \ v \end{array}
```

enabs: bit vector indicating enabledness of nonzero processes

ordered lexicographically

Predicate diagram for Dijkstra's protocol



FG stable verifiable by model checking

Summary

Semi-automatic construction of abstraction followed by model checking

Combination of model checking, theorem proving, and abstract interpretation

Challenge: integrate tools (SAL project at SRI, Stanford, Berkeley, Grenoble)

Identify useful abstractions that can be generated automatically:

parameterized systems (Manna, Sipma '99; Baukus, Lakhnech, Stahl '00) see also part of tutorial on infinite state spaces

Infinite State Spaces

Sources of infinity

Symbolic search: forward and backward

Accelerations and widenings

Sources of infinity

Data manipulation: unbounded counters, integer variables, lists . . .

Control structures: procedures → stack, process creation → bag

Asynchronous communication: unbounded FIFO queues

Parameters: number of processes, of input gates, of buffers, . . .

Real-time: discrete or dense domains

A bit of history

Late 80s, early 90s: First theoretical papers

Decidability/Undecidability results for Place/Transition Petri nets Efficient model-checking algorithms for context-free processes Region construction for timed automata

- 90s: Research program
 - 1. Decidability analysis
 - 2. Design of algorithms or semi-algorithms
 - 3. Design of implementations
 - 4. Tools
 - 5. Applications
- Late 90s, 00s: General techniques emerge

Automata-theoretic approach to model-checking Symbolic reachability Accelerations and widenings

Parametrized protocols

Defined for *n* processes.

Correctness: the desired properties hold for every *n*

Processes modelled as communicating finite automata

For each value of *n* the system has a finite state space (only one source of infinity)

Turing powerful, and so further restrictions sensible:

Broadcast Protocols

Broadcast protocols

Introduced by Emerson and Namjoshi in LICS '98

All processes execute the same algorithm, i.e., all finite automata are identical

Processes are undistinguishable (no IDs)

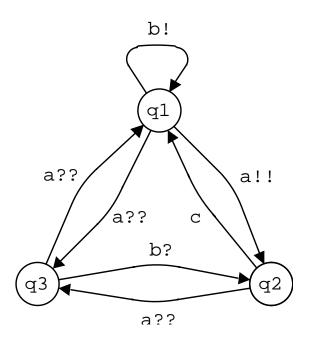
Communication mechanisms:

Rendezvous: two processes exchange a message and move to new states

Broadcasts: a process sends a message to all others

all processes move to new states

Syntax



a!! : broadcast a message along (channel) aa?? receive a broadcasted message along a

b! : send a message to one process along b

b? : receive a message from one process along b

c: change state without communicating with anybody

Semantics

The global state of a broadcast protocol is completely determined by the number of processes in each state.

Configuration: mapping : $S \to \mathbb{N}$, seen as element of \mathbb{N}^n , where n = |S|Semantics for each n: finite transition system

- configurations as nodes
- channel names as transition labels

In our example:

$$(3,1,2) \xrightarrow{c} (4,0,2)$$
 (silent move)

$$(3,1,2) \xrightarrow{b} (3,2,1)$$
 (rendezvous)

$$(3,1,2) \stackrel{a}{\longrightarrow} (2,1,3)$$
 (broadcast)

Semantics (continued)

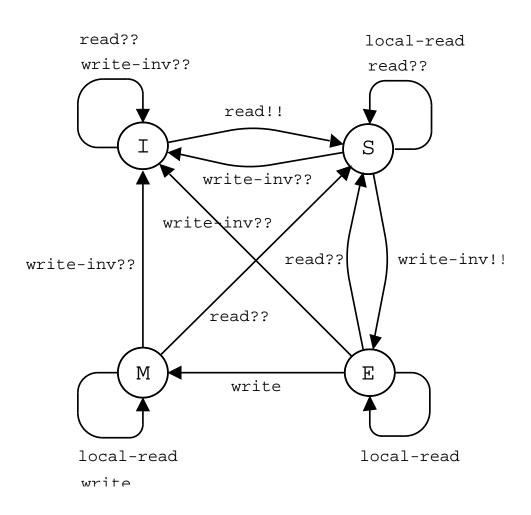
Parametrized configuration: partial mapping $p: Q \rightarrow \mathbb{N}$

- Intuition: "configuration with holes"
- Formally: set of configurations (total mappings matching p)

(Infinite) transition system of the broadcast protocol:

- Fix an initial parametrized configuration p_0 .
- Take the union of all finite transition systems \mathcal{K}_c for each configuration $c \in p_0$.

A MESI-protocol



The automata-theoretic approach

System
$$S \Longrightarrow Kripke$$
 structure $\mathcal{K} \Longrightarrow$ Languages $\mathcal{L}(\mathcal{K}), \mathcal{L}_{\omega}(\mathcal{K})$ of finite and infinite computations

If systems closed under product with automata then $\mathcal{B}_{\neg\phi} \times \mathcal{K} \Longrightarrow \mathcal{S}_{\neg\phi}$

Safety and liveness problems reducible to

- Reachability

Given: system S, sets I and F of initial and final configurations of K. To decide: if F can be reached from I, i.e., if there exist $i \in I$ and $f \in F$ such that $i \to f$.

Repeated reachability

Given: System S, sets I and F of initial and final configurations of S To decide: if F can be repeatedly reached from I, i.e. if there exist $i \in I$ and $f_1, f_2, \ldots \in F$ such that $i \to f_1 \to f_2 \cdots$

Shape of *I* and *F* depend on the class of atomic propositions

Model checking broadcast protocols

Repeated reachability is undecidable even for very simple sets *I* and *F*

It is undecidable if there is a value of *n* such that for this value the broadcast protocol has an infinite computation

Reachability is decidable for upward-closed sets I and F

U is an upward-closed set of configurations if

$$c \in U$$
 and $c' \ge c$ implies $c' \in U$

where \geq is the pointwise order on \mathbb{N}^n .

Safety property: upward-closed set D of dangerous configurations

Example: in the MESI protocol the states *M* and *S* should be mutually exclusive

$$D = \{(m, e, s, i) \mid m \ge 1 \land s \ge 1\}$$

Symbolic search: forward and backward

Let C denote a (possibly infinite) set of configurations

Forward search

post(C) = immediate successors of C

Initialize C := I

Iterate $C := C \cup post(C)$ until

 $C \cap F \neq \emptyset$; return "reachable", or

a fixpoint is reached; return "non-reachable"

Backward search

pre(C) = immediate predecessors of C

Initialize C := F

Iterate $C := C \cup pre(C)$ until

 $C \cap I \neq \emptyset$; return "reachable", or

a fixpoint is reached; return "non-reachable"

Problem: when are the procedures effective?

Forward search effective if . . .

 \dots there is a family $\mathcal C$ of sets such that

- 1. each $C \in \mathcal{C}$ has a symbolic finite representation;
- 2. $I \in \mathcal{C}$;
- 3. if $C \in \mathcal{C}$, then $C \cup post(C) \in \mathcal{C}$;
- 4. emptyness of $C \cap F$ is decidable;
- 5. $C_1 = C_2$ is decidable (to check if fixpoint has been reached); and
- 6. any chain $C_1 \subseteq C_2 \subseteq C_3 \dots$ reaches a fixpoint after finitely many steps

(1)—(5) guarantee partial correctness, (6) guarantees termination

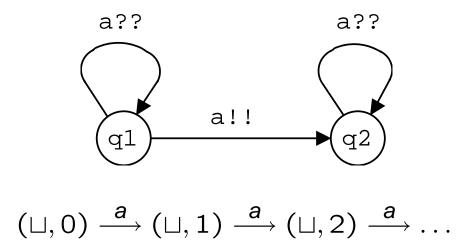
For backward search substitute post(C) by pre(C) and exchange I and F

Important difference: backward search starts from *F* instead from *I*; *I* and *F* may have different properties!

Forward search in broadcast protocols

 \mathcal{C} must contain all parametrized configurations.

Satisfies (1)—(5) but not (6). Termination fails in very simple cases.



Backward search in broadcast protocols

[Abdulla, Cerāns, Jonsson, Tsay '96], [E., Finkel, Mayr '99]

The family of all upward-closed sets satisfies (1)—(6)

- 1. An upward-closed set can be represented by its set of minimal elements w.r.t. the pointwise order \leq (Dickson's Lemma)
- 3. If *U* is upward-closed then so is $U \cup pre(U)$.

$$c \xrightarrow{a} u \in U$$

$$\leq \leq$$

$$c' \xrightarrow{a} u' \in U$$

6. Any chain $U_1 \subseteq U_2 \subseteq U_3 \dots$ of upwards closed sets reaches a fixpoint after finitely many steps (Dickson's lemma + some reasoning)

Application to the MESI-protocol

Are the states *M* and *S* mutually exclusive?

Check if the upward-closed set with minimal element

$$m = 1, e = 0, s = 1, i = 0$$

can be reached from the initial p-configuration

$$m = 0, e = 0, s = 0, i = \sqcup$$
.

Proceed as follows:

$$U: \quad m \ge 1 \land s \ge 1$$

$$U \cup pre(U): \quad (m \ge 1 \land s \ge 1) \lor$$

$$(m = 0 \land e = 1 \land s \ge 1)$$

$$U \cup pre(U) \cup pre^{2}(U): \quad U \cup pre(U)$$

Other models

FIFO-automata with lossy channels

[Abdulla and Jonsson '93], [Abdulla, Bouajjani, Jonsson '98]

Configuration: pair (q, \mathbf{w}) , where q state and \mathbf{w} vector of words representing the queue contents

Class C: upward-closed sets with the subsequence order

Backward search satisfies (1)—(6)

Timed automata

[Alur and Dill '94]

Configuration: pair (q, x), where q state and x vector of real numbers

Class C: regions

Forward search satisfies (1)—(6)

Accelerations and widenings: setup

 $post[\sigma](C) = \text{set of configurations reached from } C \text{ by the sequence } \sigma$

Compute a symbolic reachability graph with elements of C as nodes:

Add I as first node

For each node C and each label a, add an edge $C \xrightarrow{a} post[a](C)$

Accelerations

Replace $C \xrightarrow{\sigma} post[\sigma](C)$ by $C \xrightarrow{\sigma} X$, where X satisfies

- (1) $post[\sigma](C) \subseteq X$, and
- (2) X contains only reachable configurations

Condition (1) guarantees the acceleration

Condition (2) guarantees that only reachable configurations are computed

Acceleration through loops

A loop is a sequence $C \xrightarrow{\sigma} post[\sigma](C)$ such that

$$C \xrightarrow{\sigma} post[\sigma](C) \xrightarrow{\sigma} post[\sigma^2](C) \xrightarrow{\sigma} post[\sigma^3](C) \cdots$$

Syntactic loops (e.g. $s \xrightarrow{a!} s$ in FIFO-systems)

Semantic loops defined through simulations: C_1 is simulated by C_2 $\downarrow a$ $\downarrow a$ $\downarrow a$ C_1' is simulated by C_2'

If $post[\sigma](C)$ simulates C, then $C \xrightarrow{\sigma} post[\sigma](C)$ is a loop

Example: $M \xrightarrow{\sigma} M \ge M$ in Petri nets

Acceleration: given a loop $C \xrightarrow{\sigma} post[\sigma](C)$, replace $post[\sigma](C)$ by

$$X = post[\sigma^*](C) = C \cup post[\sigma](C) \cup post[\sigma^2](C) \cup \dots$$

Problem: find a class of loops such that $post[\sigma^*](C)$ belongs to C

Accelerations in broadcast protocols

Class C: parametrized configurations

Class of loops: given by the following simulation

If
$$\sqcup > n$$
 for all n then $p_1 \leq p_2$ $\downarrow a \qquad \downarrow a$ $p_1' \leq p_2'$ So if $C \leq post[\sigma](C)$ then $post[\sigma](C)$ simulates C

 $post[\sigma^*](p)$ may not be a parametrized configuration

Other models I

Counter machines [Boigelot, Wolper 94]

Configuration: pair (q, n_1, \dots, n_k) , where q state n_1, \dots, n_k integers

Class C: Presburger sets

Class of loops: syntactic

Pushdown automata [Bouajjani, E., Maler '97]

Configuration: pair (q, w), where q state and w stack content

Class C: regular sets

Class of loops: through semantic loops $(q, aw) \stackrel{\sigma}{\longrightarrow} (q, aw'w)$

Acceleration guarantees termination for both forward and backward search!

Other models II

FIFO-automata with lossy channels [Abdulla, Bouajjani, Jonsson '98]

Configuration: pair (q, \mathbf{w}) , where s state and \mathbf{w} vector of words representing the contents of the queues

Class C: regular sets represented by simple regular expressions

Class of loops: arbitrary

Other examples

FIFO-automata with perfect channels [Boigelot, Godefroid], [Bouajjani, Habermehl '98] Arrays of parallel processes [Abdulla, Bouajjani, Jonsson, Nilsson '99]

Widenings

Accurate widenings

Replace $C \xrightarrow{\sigma} post[a](C)$ by $C \xrightarrow{\sigma} X$, where X satisfies

- (1) $post[a](C) \subseteq X$, and
- (2') X contains only reachable final configurations

Notice that *X* may contain unreachable non-final configurations!

Inaccurate widenings

Replace $C \xrightarrow{\sigma} post[a](C)$ by $C \xrightarrow{\sigma} X$, where X satisfies

(1)
$$post[a](C) \subseteq X$$

If no configuration of the graph belongs to F, then no reachable configuration belongs to F If some configuration of the graph belongs to F, no information is gained

Accurate widenings in broadcast protocols

Fact: $post[\sigma](p) = T_{\sigma}(p)$ for a linear transformation $T_{\sigma}(p) = M_{\sigma} \cdot x + b_{\sigma}$

It follows: $post[\sigma^*](p) = \bigcup_{n>0} T_{\sigma}^n(p)$

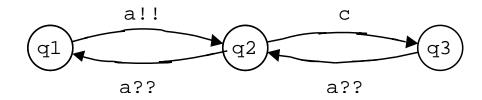
Accurate widening: widen $post[\sigma^*](p)$ to $lub\{T_{\sigma}^n(p) \mid n \geq 0\}$

Theorem: if the set *F* is upward closed, this widening is accurate

Does widening lead to termination?

For arbitrary broadcast protocols: NO [E., Finkel, Mayr '99]

Example in which the acceleration doesn't have any effect:



$$p_0 = (\sqcup, 0, 0)$$

For rendezvous communication only: YES [Karp and Miller '69], [German and Sistla '92]

Implementing backwards reachability

Linear constraints as finite representation of sets of configurations.

The variable x_i represents the number of processes in state q_i

Set of configurations \rightarrow set of constraints over $\mathbf{x} = \langle x_1, \dots, x_n \rangle$ (interpreted disjunctively)

Immediate predecessors computed symbolically

Union and intersection —— disjunction and conjunction

Containment test — entailment

Label $a \longrightarrow$ linear transformation with guard.

In our example

• Guard G_a : $x_1 \ge 1$

• Linear transformation $M_ax + b_a$:

$$M_a = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \quad b_a = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

Symbolic computation of pre must satisfy

$$pre(\Phi) \equiv \bigvee_{a \in \Sigma, \phi \in \Phi} G_a \wedge \phi[x / M_a x + b_a]$$

Which class of constraints?

Able to express all upward-closed sets

Efficient computation of pre

Efficient entailment test

Entailment test co-NP-complete for arbitrary constraints

Natural candidates

L-constraints

Conjunction of inequations of shape $x_1 + \ldots + x_n \geq c$

Closed under broadcast transformations.

Entailment co-Np-complete even for single constraints

WA-constraints

Conjunction of inequations of shape $x_i \ge c$

Entailment is polynomial (quadratic)

Not closed under broadcast transformations.

L-constraints equivalent to sets of WA-constraints, but with exponential blow-up:

$$x_{i_1} + \ldots + x_{i_m} \geq c \equiv \bigvee_{c_1 + \ldots + c_m = c} x_{i_1} \geq c_1 \wedge x_{i_2} \geq c_2 \wedge \ldots \wedge x_{i_m} \geq c_m$$

Using WA-constraints

[Delzanno and Raskin '00]

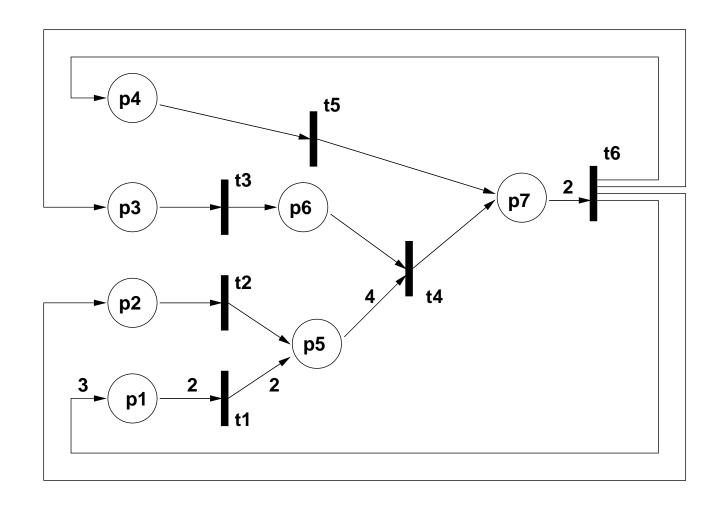
Represent the constraint $x_1 \geq c_1 \wedge \ldots \wedge x_n \geq c_n$ by $(c_1, \ldots c_n)$

Use sharing trees to represent sets of constraints

A sharing tree is an acyclic graph with one root and one terminal node such that

all nodes of layer i have successors in the layer i+1 a node cannot have two successors with the same label two nodes with the same label in the same layer do not have the same set of successors

A small Petri net experiment [Teruel '98]



Deadlock-free states are the predecessors of an upward-closed set

Deadlock-free initial markings:

$$P_1 \ge 10, P_2 \ge 1, P_3 \ge 2$$
 $P_1 \ge 8, P_3 \ge 3$ $P_1 \ge 12, P_3 \ge 2$ $P_1 \ge 6, P_2 \ge 5, P_3 \ge 2$ $P_1 \ge 8, P_3 \ge 1, P_4 \ge 1$ $P_1 \ge 6, P_4 \ge 2$ $P_1 \ge 6, P_2 \ge 1, P_3 \ge 1, P_4 \ge 1$

Computation time (Sun Ultra Sparc):

Sharing trees	HyTech	Presburger
39s	> 24h	19h50m

Using L-constraints

[Delzanno, E., Podelski '99], [Delzanno '00]

First simplification: entaiment need only be computed for single constraints

```
Replace  \begin{array}{c} \mathbf{until} \; Entail(\Phi, old\_\Phi) \\ \\ \mathbf{by} \; \mathbf{the} \; \mathbf{stronger} \; \mathbf{condition} \\ \\ \mathbf{until} \; \mathbf{forall} \; \phi \in \Phi \; \mathbf{exists} \; \psi \in old\_\Phi \; \colon \; \; Entail(\phi, \psi) \\ \end{array}
```

Possibly slower, but still guaranteed termination

But entailment for L-constraints co-Np-complete even for single constraints!

Second simplification: interpret entailment over the reals

Again, stronger until-condition which does not spoil termination

Case studies (by G. Delzanno)

Broadcast protocols must be extended with more complicated guards.

Termination guarantee gets lost

Berkeley RISC, Illinois, Xerox PARC Dragon, DEC Firefly

At most 7 iterations and below 100 seconds (SPARC5, Pentium 133)

Futurebus +

8 steps and 200 seconds (Pentium 133)

Conclusions

Decidability analysis very advanced

Many algorithms useful in practice

In the next years: improve implementations, integrate in tools.

Challenge: several sources of infinity.