T-79.159 Cryptography and Data Security 2005 / Homework 5 Tue 19.4 and Fri 22.4

- 1. Use the Square-and-Multiply algorithm to compute 5^{11}
 - (a) in modulo 2005 arithmetic; and
 - (b) in polynomial arithmetic modulo $f(x) = x^4 + x + 1$
- 2. Why isn't \mathbb{Z}_n a field when *n* isn't a prime. Which property fails?
- 3. Let us define an operation in the set of 16-bit integers as follows. Given two sixteenbit integers compute first their product modulo $2^{16} + 1$. If the result is equal to 2^{16} it is encoded as zero. How many zeros are there in the resulting table for this operation? (Note that this is different from the IDEA operation that makes use of multiplication modulo $2^{16} + 1$. In IDEA, before multiplication is computed, an all-zero 16-bit string is replaced by the number 2^{16} .)
- 4. In the round key expansion procedure Rijndael makes use of constants C_i , i = 1, 2, 3, ..., 30 that can be computed as

$$C_i = 2^{i-1}$$

in polynomial arithmetic modulo $m(x) = x^8 + x^4 + x^3 + x + 1$. Compute C_{11} , C_{12} and C_{13} .

- 5. Show that the multiplicative order of $g = 8 = 2^3$, in modulo 19 arithmetic, is equal to 6.
- 6. Alice and Bob use Diffie-Hellman in the cyclic group of order 18 generated by g = 2 in modulo 19 arithmetic. Alices secret exponent a = 7 and Bob's secret exponent b = 5. Compute the Diffie-Hellman key K.