

Axiom 5: Group (G,*) is Abelian group (or commutative group) if the operation * is commutative, that is, given $a \in G$ and $b \in G$, then a * b = b * a.

Extended Euclidean Algorithm for polynomials Example i q r_i U_i Vi $x^{4} + x + 1$ 1 -2 0 **x**² 1 -1 0 **X**² **X**² 1 0 x+1 1 x³+1 Х Х Х 2 $x^{3}+x^{2}+1$ 1 1 x+1 8

Extended Euclidean Algorithm for polynomials Example cont'd

So we get

 $u_2 \cdot x^2 + v_2 \cdot (x^4 + x + 1) = (x^3 + x^2 + 1)x^2 + (x + 1)(x^4 + x + 1)$

from where the multiplicative inverse of x^2 modulo $x^4 +x+1$ is equal to x^3+x^2+1 .

Motivation for polynomial arithmetic:

• uses all n-bit numbers

provides uniform distribution of the multiplication result

Example: Modulo 2³ arithmetic compared to GF(2³) arithmetic (multiplication).

In GF(2ⁿ) arithmetic, we identify polynomials of degree less than n: $a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$

with bit strings of length n: $(a_0, a_1, a_2, \dots, a_{n-1})$

and further with integers less than 2ⁿ:

$$a_0 + a_1 2 + a_2 2^2 + \dots + a_{n-1} 2^{n-1}$$

9

Example: In GF(2^3) arithmetic with polynomial x^3+x+1 (see next slide) we get:

$$4 \cdot 3 = (100) \cdot (011) = x^2 \cdot (x+1) = x^3 + x^2 = (x+1) + x^2 = x^2 + x+1 = (111) = 7$$

	Multiplication tables																
modulo 8 arithmetic							GF(2 ³) Polynomial arithmetic										
	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6	2	0	2	4	6	3	1	7	6
3	0	3	6	1	4	7	2	5	3	0	3	6	5	7	4	1	2
4	0	4	0	4	0	4	0	4	4	0	4	3	7	6	2	5	1
5	0	5	2	7	4	1	6	3	5	0	5	1	4	2	7	3	6
6	0	6	4	2	0	6	4	2	6	0	6	7	1	5	3	2	4
7	0	7	6	5	4	3	2	1	7	0	7	5	2	1	6	4	3

Gener	ated se	t	
Example: Finite field Z ₁₉	i	g ⁱ	
g = 7	0	1	
g mou ra	1	7	
	2	49=11	
	3	77=1	
	4	7	
	5	11	
			12

Generated	d ele	men	ts		
Example: Finite field Z ₁₉	i	gi	i	gi	
-	0	1	10	17	
g = 2	1	2	11	15	
$g' \mod 19, 1 = 0, 1, 2, \dots$	2	4	12	11	
Element o - 2 generatos	3	8	13	3	
Element $a = 2$ generates	4	16	14	6	
Such an element is called	5	13	15	12	
primitive	6	7	16	5	
pinnuve.	7	14	17	10	
	8	9	18	1	
	9	18			10

$$g^{7} = (x+1)(x^{3} + x) = x^{4} + x^{3} + x^{2} + x = x^{3} + x^{2} + 1 = 1101$$

 $g^8 = (x+1)(x^3 + x^2 + 1) = x^4 + x^2 + x + 1 = x^2 = 0100$

 $\begin{array}{l} g^9 = (x+1)x^2 = x^3 + x^2 = 1100 \\ g^{10} = (x+1)(x^3 + x^2) = x^2 + x + 1 = 0111 \\ g^{11} = (x+1)(x^2 + x + 1) = x^3 + 1 = 1001 \\ g^{12} = (x+1)(x^3 + 1) = x^3 = 1000 \\ g^{13} = (x+1)x^3 = x^3 + x + 1 = 1011 \end{array}$

 $g^{14} = (x+1)(x^3 + x + 1) = x^3 + x^2 + x = 1110$

 $g^{15} = (x+1)(x^3 + x^2 + x) = 1 = 0001$

15

