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T-79.159
Cryptography and Data Security

Lecture 8: 
- Finite fields and cyclic groups 
- Discrete Logarithm Problem
- Diffie-Hellman key agreement 
scheme 
- ElGamal public key encryption

Kaufman et al: Ch 6
Stallings: Ch 5, 8, 10

2

Axioms: Group
Group (G,∗): A set G, with operation ∗.

Additive group: “∗” is addition + 

Multiplicative group: “∗” is multiplication ·

Axiom 1: G is closed under the operation ∗, that is, given a∈G and 
b∈G, then a∗b∈G.

Axiom 2: Operation ∗ is associative, that is, given a∈G,b∈G and c∈G, 
then (a∗b)∗c = a∗(b∗c).

Axiom 3: There is an identity element in (G,∗), that is, an element e∈G
(identity element) such that  a∗e = e∗a = a, for all a∈G. Then e is 
denoted by 1 (general and multiplicative case), or by 0 (additive 
case)

Axiom 4: Every element has an inverse, that is, given a∈G there is a 
unique b∈G such that a∗b = b∗a = e. Then b is denoted by a-1

(general or multiplicative case) or  by –a (additive case).
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Axioms: Abelian Group

Axiom 5: Group (G,∗) is Abelian group (or commutative 
group) if the operation ∗ is commutative, that is, given 
a∈G and b∈G, then a∗b = b∗a. 
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Axioms: Ring (R,+,·)
A set R with two operations + and · is a ring if the following 

eight axioms hold:
A1: Axiom 1 for + 
A2: Axiom 2 for +
A3: Axiom 3 for +
A4: Axiom 4 for +
A5: Axiom 5 for +
M1: Axiom 1 for ·
M2: Axiom 2 for ·

M3: Distributive laws hold, that is, given a∈G,b∈G and 
c∈G, then a·(b+c) = a·b+a·c and (a+b)·c = a·c+b·c.

(R,+) is an Abelian Group
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Axioms: Commutative Ring and Field

A ring (R,+,·) is commutative if 

M4: Axiom 5 for multiplication holds

A commutative ring (F,+,·) is a field if :

M5: Axiom 3 for · in F-{0}, that is, a∗1 = 1∗a = a, for all a∈F, a≠0. 

M6: Axiom 4 for · in F-{0}, that is, given a∈F, a≠0, there is a unique   
a-1∈F such that a∗ a-1 = a-1∗a = 1.

If (F,+,·) is a field, then F∗ = F-{0} with multiplication is a group. 

Example: p prime, then Zp ={a | 0≤a<p} with modulo p addition and 
multiplication is a field and (Zp

∗,·) is a group.
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Polynomial Arithmetic

• Modular arithmetic with polynomials
• We limit to the case where polynomials have binary 

coefficients, that is, 1+1 = 0, and + is the same as -.
Example:

Computation                                means that everywhere
we take                            ,which means, for example, that  
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Galois Field

Given a binary polynomial f(x) of degree n, consider a set 
of binary polynomials with degree less than n. This set 
has 2n polynomials. With polynomial arithmetic modulo 
f(x) this set is a ring. 

Faxt: If f(x) is irreducible, then this set with 2-ary (binary) 
polynomial arithmetic is a field denoted by GF(2n). 

In particular, every nonzero polynomial has a 
multiplicative inverse modulo f(x). We can compute a 
multiplicative inverse of a polynomial using the 
Extended Euclidean Algorithm.

Example: Compute the multiplicative inverse of x2 modulo 
x4 +x+1
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Extended Euclidean Algorithm for polynomials

Example

x+1x3+x2+1112

xx3+1xx1

1x2x+1x20

01x2-1

10x4 +x+1-2

viuiriqii
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Extended Euclidean Algorithm for polynomials

Example cont’d

So we get 

u2⋅x2 + v2⋅(x4 +x+1) = (x3+x2+1)x2 +(x+1)(x4 +x+1) 

from where the multiplicative inverse of x2 modulo x4 

+x+1 is equal to x3+x2+1. 

Motivation for polynomial arithmetic:

• uses all n-bit numbers

• provides uniform distribution of the multiplication 
result 
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Example: Modulo 23 arithmetic compared to 
GF(23) arithmetic (multiplication).

In GF(2n) arithmetic, we identify polynomials of degree 
less than n:

with bit strings of length n:

and further with integers less than 2n: 

Example: In GF(23) arithmetic with polynomial x3+x+1 
(see next slide) we get:

4⋅3 = (100) ⋅(011) = x2⋅ (x+1)= x3 + x2 = (x+1) + x2 = x2 + 
x+1 = (111) = 7

1
1

2
210

−
−++++ n

n xaxaxaa L

),,,,( 1210 −naaaa K

1
1

2
210 222 −

−++++ n
naaaa L
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Multiplication tables

123456707

246024606

361472505

404040404

527416303
642064202

765432101

000000000

76543210

346125707

423517606

637241505

152673404

214756303
671364202

765432101

000000000

76543210

modulo 8 arithmetic GF(23) Polynomial arithmetic
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Generated set

Example: Finite field Z19

g = 7
gi mod 19

……

115

74

77=13

49=112

71

10

gii
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Generated elements 

Example: Finite field Z19

g = 2
gi mod 19, i = 0,1,2,…

Element a = 2 generates 
all nonzero elements in Z19.
Such an element is called 
primitive.  

189

98

147

76

135

164

83

42

21
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gii

118

1017

516

1215

614

313

1112

1511

1710

gii
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Cyclic subgroups 

F finite field, g ∈ F*, let <g> denote the set generated by g; 
<g> = {1=g0,g1,g2,…,gr-1}, where r is the least positive 
number such that gr=1 in F. By Fermat’s and Euler’s 
theorems r ≤ # F*. 

r is the order of  g. 
<g> is a subgroup of the multiplicative group F* of F. 
Axiom 1: gi ⋅gj = g i+j  ∈ <g>.
Axiom 2: associativity is inherited from F
Axiom 3: 1 = g0  ∈ <g>.
Axiom 4: Given gi  ∈ <g> the multiplicative inverse is gr-i , 

as gi⋅gr-i = gr-i⋅gi = gr =1
<g> is called a cyclic group. The entire F* is a cyclic group 

generated by a primitive element, e.g, Z19* = <2>.
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Example: Cyclic group in Galois Field
GF(24) with polynomial f(x) = x4 + x + 1

g = 0011= x+1
g2 = x2+1=0101
g3 = (x+1)(x2+1) = x3 + x2 + x + 1 = 1111
g4 = (x+1)(x3 + x2 + x + 1) = x4 + 1 = x = 0010
g5 = (x+1)(x4 + 1) = x5 + x4 + x + 1 = x2 + x = 0110
g6 = (x+1)(x2 + x) = x3 + x = 1010
g7 = (x+1)(x3 + x) = x4 + x3 + x2 + x = x3 + x2 +1= 1101
g8 = (x+1)(x3 + x2 +1) =  x4 + x2 +x+1= x2 =0100
g9 = (x+1)x2 = x3 + x2 = 1100
g10 = (x+1)(x3 + x2)= x2 + x + 1= 0111
g11 = (x+1)(x2 + x +1) = x3 + 1 = 1001
g12 = (x+1)(x3 + 1) = x3 = 1000
g13 = (x+1)x3 = x3 + x + 1 = 1011
g14 = (x+1)(x3 + x + 1) = x3 + x2 +x = 1110
g15 = (x+1)(x3 + x2 +x) = 1= 0001
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Discrete logarithm 

Given a ∈ <g> = {1,g1,g2,…,gr-1}, there is x, 0 ≤x < r such 
that a =gx. The exponent x is called the discrete 
logarithm of a to the base g.

Example: Solve the equation

We find the solution using the table (slide 13): x =7.
Without the precomputed table the discrete logarithm is 

often hard to solve. Cyclic groups, where the discrete 
logarithm problem is hard, are used in cryptography. 

19mod142 =x
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Diffie-Hellman Key Exchange

ALICE BOB

a  secret

A = ga mod p
b  secret

B = gb mod p

A

B

K = Ba mod p K = Ab mod p
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Security of Diffie-Hellman Key Exchange

• If the Discrete Logarithm Problem (DLP) is easy then DH KE is 
insecure

• Diffie-Hellman Problem (DHP): 

Given g,ga,gb, compute gab.

• It seems that in groups where the DHP is easy, also the DL is easy. 
It is unknown if this holds in general.

• DH KE is secure against passive wiretapping.

• DH KE is insecure under the active man-in-the-middle attack: Man-
in-the-Middle exchanges a secret key with Alice, and another with
Bob, while Alice believes that she is talking confidentially to Bob, 
and Bob believes he is talking confidentially to Alice (see next slide).

• This problem is solved by authenticating the Diffie-Hellman key
exchange messages.  
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Man-in-the-Middle in the DH KE

Alice
Carl                  

(man-in-the-middle) Bob

a

ga

K2= (ga)c2

ga
gc1

b

gb

K1= (gb)c1

gc2

gb

c1

gc1

c2

gc2

K1= (gb)c1

K2= (ga)c2

Protection using K2 Protection using K1

20

Recall: The Principle of Public Key Cryptosystems

Encryption operation is public
Decryption is private

Alice’s key for a public key cryptosystem is a pair: 
(Kpub,Kpriv) where Kpub is public and Kpriv is cannot be 
used by anybody else than Alice. 

anybody

encryption decryption

Alice
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Setting up the ElGamal public key cryptosystem

• Alice selects a primitive element g in Zp* .
• Alice generates a, 0< a < p-1, and computes ga mod 

p = A. 
• Alice’s public key: Kpub = (g, A )
• Alice’s private key: Kpriv = a 
• Encryption of message m ∈ Zp* : Bob generates a 

secret, unpredictable k, 0< k < p-1. The encrypted 
message is the pair (gkmod p, (Ak ⋅m) mod p).

• Decryption of the ciphertext: Alice computes (gk)a= Ak

mod p, and the multiplicative inverse of Ak mod p. 
Then m = (Ak ) -1⋅ (Ak ⋅m) mod p.

Diffie-Hellman Key Exchange and ElGamal
Cryptosystem can be generalised to any cyclic group, 
where the discrete logarithm problem is hard.


