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Cryptography and Data Security

Lecture 8:
- Finite fields and cyclic groups
- Discrete Logarithm Problem

- Diffie-Hellman key agreement
scheme

- ElIGamal public key encryption

Kaufman et al: Ch 6
Stallings: Ch 5, 8, 10

Axioms: Group

Group (G,*): A set G, with operation .
Additive group: “+” is addition +
Multiplicative group: “+” is multiplication -

Axiom 1: G is closed under the operation *, that is, given ac G and
be G, then axbe G.

Axiom 2: Operation * is associative, that is, given ac G,be G and ce G,
then (axb)*c = ax(b*c).

Axiom 3: There is an identity element in (G,*), that is, an element ee G
(identity element) such that axe = e*xa = a, for allacG. Then e is
denoted by 1 (general and multiplicative case), or by 0 (additive
case)

Axiom 4: Every element has an inverse, that is, given ae G there is a
unique be G such that axb = b*a = e. Then b is denoted by a*
(general or multiplicative case) or by —a (additive case).




Axioms: Abelian Group

Axiom 5: Group (G,*) is Abelian group (or commutative
group) if the operation * is commutative, that is, given
ae G and be G, then axb = bxa.

Axioms: Ring (R,+,")

A set R with two operations + and - is a ring if the following
eight axioms hold:

Al: Axiom 1 for +
A2: Axiom 2 for +
A3: Axiom 3 for + (R,+) is an Abelian Group
A4: Axiom 4 for +
A5: Axiom 5 for +
M1: Axiom 1 for -
M2: Axiom 2 for -

M3: Distributive laws hold, that is, given ae G,be G and
ce G, then a:(b+c) = a-b+a-c and (a+b)-c = a-ct+b-c.




Axioms: Commutative Ring and Field

Aring (R,+,-) is commutative if
M4: Axiom 5 for multiplication holds

A commutative ring (F,+,) is a field if :
M5: Axiom 3 for - in F-{0}, that is, a=1 = 1+a = a, for all ac F, a=0.

M6: Axiom 4 for - in F-{0}, that is, given ac F, a=0, there is a unique
aleFsuchthatax al=alxa=1.

If (F,+,-) is afield, then F* = F-{0} with multiplication is a group.

Example: p prime, then Z; ={a | 0O<a<p} with modulo p addition and
multiplication is a field and (Z,*,-) is a group.

Polynomial Arithmetic

* Modular arithmetic with polynomials

» We limit to the case where polynomials have binary
coefficients, that is, 1+1 = 0, and + is the same as -.

Example:

(X* + X+ (X +x+1) =

XCAHX+ X+ X+ X+ x+ X+ x+1=

X° 4+ X=X (x*+1) = x- x = x*(mod(x* + x+1))
Computation mod(x* +x+1) means that everywhere

we take X'+ Xx+1=0 ,which means, for example, that
x*+1=x.




Galois Field

Given a binary polynomial f(x) of degree n, consider a set
of binary polynomials with degree less than n. This set
has 2" polynomials. With polynomial arithmetic modulo
f(x) this set is a ring.

Faxt: If f(x) is irreducible, then this set with 2-ary (binary)
polynomial arithmetic is a field denoted by GF(2").

In particular, every nonzero polynomial has a
multiplicative inverse modulo f(x). We can compute a
multiplicative inverse of a polynomial using the
Extended Euclidean Algorithm.

Example: Compute the multiplicative inverse of x2 modulo
x4 +x+1

Extended Euclidean Algorithm for polynomials

Example
i Qi Fi U; Vi
-2 X4 +x+1 1
-1 X2 0
0 X2 X+1 X2 1
1 X X x3+1 X
2 1 1 x3+x2+1 | x+1




Extended Euclidean Algorithm for polynomials
Example cont'd

So we get
Uy X2 + Vo (X* +X+1) = (X3+X2+1)X? +(x+1)(x* +x+1)

from where the multiplicative inverse of x2 modulo x*
+x+1 is equal to x3+x2+1.

Motivation for polynomial arithmetic:
* uses all n-bit numbers

 provides uniform distribution of the multiplication
result

Example: Modulo 23 arithmetic compared to
GF(23) arithmetic (multiplication).

In GF(2") arithmetic, we identify polynomials of degree

less than n: > n_1
Ay + X+ X +---+aq, ;X

with bit strings of length n: (ao, a,, 82,...,an_1)
and further with integers less than 2":
a,+a2+a,2°+---+a, 2"

Example: In GF(23) arithmetic with polynomial x3+x+1
(see next slide) we get:

4-3 = (100) -(011) = X2 (x+1)= x3+ x2 = (x+1) + x2 = x2 +
x+1 = (111) = 7
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Multiplication tables

GF(23) Polynomial arithmetic

modulo 8 arithmetic
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Generated set
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Example: Finite field Z,,

=7
g'mod 19

g
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Generated elements

Example: Finite field Z,4

1 10 | 17
2 11 | 15
4 12 | 11
8 13| 3
16 14| 6

g=2
gmod19,i=0,1,2,...

Element a = 2 generates
all nonzero elements in Z,,.

Such an element is called 15|12

. 7 16 | 5
primitive.

14 17 | 10

9 18| 1
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Cyclic subgroups

F finite field, g € F*, let <g> denote the set generated by g;
<g> ={1=9g°%4g,02,...,g"1}, where r is the least positive
number such that g'=1 in F. By Fermat’s and Euler’s
theorems r < # F*.

ris the order of g.

<g> is a subgroup of the multiplicative group F* of F.

Axiom 1: g -gi=g™ e <g>.

Axiom 2: associativity is inherited from F

Axiom 3:1=¢g° € <g>.

Axiom 4: Given g' e <g> the multiplicative inverse is g,
as gl,gl’-l ey gl’-l,gl ey gl’ :1

<g> is called a cyclic group. The entire F* is a cyclic group

generated by a primitive element, e.g, Z,g* = <2>.
14




Example: Cyclic group in Galois Field
GF(2%) with polynomial f(x) = x*+x + 1

g =0011=x+1

02 = x2+1=0101

e =(x+1)(x2+1) =x3+x2+x+1=1111

g = (x+)(x¥+x2+x+1)=x*+1=x=0010
P=(x+t)x*+ 1) =x>+x*+x+1=x2+x=0110
g% = (x+1)(x2 + x) = x3 + x = 1010

g =(x+t)(C+x)=x*+x3+x2+x=x3+x2+1= 1101
g8 = (x+1)(x® + x2 +1) = x* + X2 +x+1= x2 =0100
g% = (x+1)x2 = x3 + x2 = 1100

g0 = (x+1)(x3 + x3)= x2 + x + 1= 0111

gt = (x+1)(x2 + x +1) =x3 + 1 = 1001

g2 = (x+1)(x® + 1) = x3 = 1000

gl =(x+1)x3=x3+x+1=1011

g = (x+1)(x3 +x + 1) = x3 + x2 +x = 1110

g% = (x+1)(x® + x2 +x) = 1= 0001
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Discrete logarithm

Given a € <g>={1,9%,0g%,...,g"1}, there is x, 0 <x < r such
that a =gX. The exponent x is called the discrete
logarithm of a to the base g.

Example: Solve the equation
2" =14mod19

We find the solution using the table (slide 13): x =7.

Without the precomputed table the discrete logarithm is
often hard to solve. Cyclic groups, where the discrete
logarithm problem is hard, are used in cryptography.
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Diffie-Hellman Key Exchange

ALICE BOB
7 4 A=g* modp B=g’modp

A

B
¢ N K=B?2 modp K = AP mod p
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Security of Diffie-Hellman Key Exchange

¢ If the Discrete Logarithm Problem (DLP) is easy then DH KE is
insecure

« Diffie-Hellman Problem (DHP):
Given g,g2,g°, compute ga®.
* It seems that in groups where the DHP is easy, also the DL is easy.
It is unknown if this holds in general.
« DH KE is secure against passive wiretapping.

* DH KE is insecure under the active man-in-the-middle attack: Man-
in-the-Middle exchanges a secret key with Alice, and another with
Bob, while Alice believes that she is talking confidentially to Bob,
and Bob believes he is talking confidentially to Alice (see next slide).

« This problem is solved by authenticating the Diffie-Hellman key
exchange messages.
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Man-in-the-Middle in the DH KE

Al Carl
ce (man-in-the-middle) Bob

a ga Cl

ga gCl b

c2

2
gc gCZ

K,= (g%)2 Ki= (@°)*

K,= (g°)ct

Ky= (9%
Protection using K, Protection using K,
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Recall: The Principle of Public Key Cryptosystems

Encryption operation is public
Decryption is private

anybody
/ Alice

encryption decryption

Alice’s key for a public key cryptosystem is a pair:
(Kpub Kpriv) Where K, is public and K,;, is cannot be
used by anybody else than Alice.

priv

20
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Setting up the EIGamal public key cryptosystem

* Alice selects a primitive element g in Z* .

» Alice generates a, 0< a < p-1, and computes g2 mod
p=A.

* Alice’s public key: K, = (9, A)

* Alice’s private key: Ky, = a

* Encryption of message m € Z,* : Bob generates a
secret, unpredictable k, 0< k < p-1. The encrypted
message is the pair (g“mod p, (Ak-m) mod p).

« Decryption of the ciphertext: Alice computes (g¥a= Ak
mod p, and the multiplicative inverse of Ak mod p.
Then m = (Ak)-1. (Ak-m) mod p.

Diffie-Hellman Key Exchange and ElGamal

Cryptosystem can be generalised to any cyclic group,
where the discrete logarithm problem is hard.
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