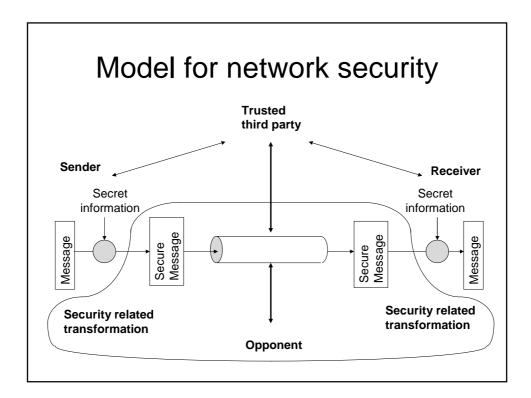
T-79.159 Cryptography and Data Security

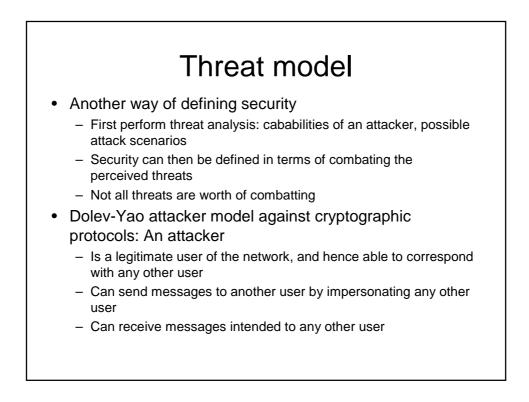
Kaisa Nyberg, professor Johan Wallén, assistant

General <u>http://www.tcs.hut.fi/Studies/T-79.159/</u> Course agenda (check dates!) 12 lectures á 2 hours, Wed 8-10, Fri 14-16 6 homework sessions, two groups: Tue or Fri 3 credits, requirements: Exam (max 30 pts) The first exam: Monday, May 16, 2005 at 13-16 in T1 0 - 6 pts credit from homework Alternative to T-110.470 Salausjärjestelmät

Useful books

- Network Security, Private Communication in a Public World, by C. Kaufman, Radia Perlman, Mike Speciner. Second edition, Prentice Hall 2002, ISBN 0-13-046019-2
- Cryptography and Network Security, Principles and Practices, by W. Stallings. Third edition, Pearson Education 2003, ISBN 0-13-091429-0
- UMTS Security, by V. Niemi and K. Nyberg, Wiley 2002, ISBN 0-470-84794-8


Contents	
 Classical cryptosystems Introduction to modern cryptography Block ciphers: DES, IDEA, AES Stream ciphers: RC4, 3gpp f8 Block cipher modes of 	 Public key cryptosystems: RSA Prime number generation Polynomial arithmetic Public key cryptosystems: Diffie-Hellman, El Gamal, DSS Authentication and Digital signatures Random number generation Authentication and key agreement protocols in practise: PGP, SSL/TLS, IPSEC, IKEv2 and EAP


Lecture 1: Introduction to data security

- General security principles
- Communication security
- Design of a secure system
- Example: GSM security

What is Security?

- Security is an abstract concept
- Security is about protection methods against deliberate misbehaving actions
- Security in not fault-tolerance and robustness
- There is a division between physical security and information security.
- Physical security
 - locked rooms, safes and guards
 - tamper-resistance
 - proximity
 - biometric protection

Computer and Communication Layers Security

System level security

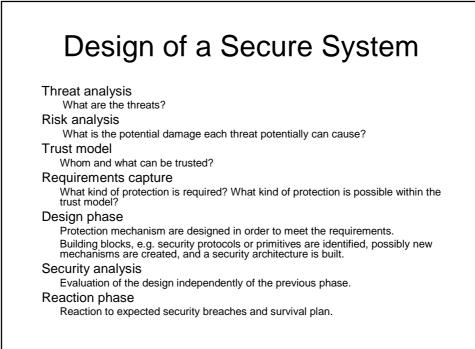
"The system is as strong as its weakest link."

Application security

e.g. banking applications over Internet use security mechanisms which are tailored to meet their specific requirements.

Protocol level security

well-defined communication steps in certain well-defined order.

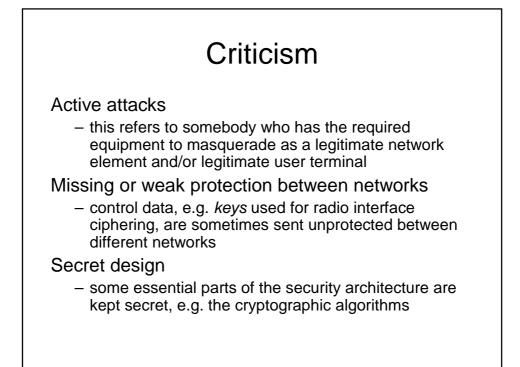

Operating system security

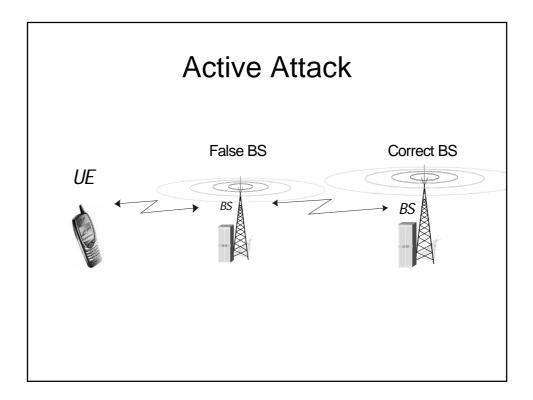
the behaviour of all elements in a network depends on the correct functionality of the operating system that controls them.

Platform security

properties of the computing platform, e.g. protected memory space. Security primitives

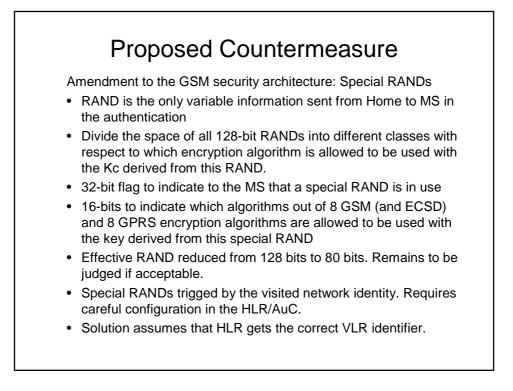

these are the basic building blocks, e.g. cryptographic algorithms.




Example: GSM Security

Main features

- Authentication of the user
 - correct billing
- Encryption of communication in radio interface
 - > confidentiality of user and control data
 - ➤ call integrity
- Use of temporary identities
 - > user privacy
 - Iocation privacy


Barkan–Biham-Keller Attack (2003)

Exploits weaknesses in cryptographic algorithms:

- A5/2 can be instantly broken
- ... AND other fundamental flaws in the GSM security system:
 - A5/2 mandatory feature in handsets
 - Call integrity based on an (weak) encryption algorithm
 - The same Kc is used in different algorithms

 Attacker can force the victim MS to use the same Kc by RAND replay Two types of attacks:

- 1. Decryption of encrypted call using ciphertext only
 - Catch a RAND and record the call encrypted with Kc and A5/3
 - Replay the RAND and tell the MS to use A5/2
 - Analyse Kc from the received encrypted uplink signal
- 2. Call hi-jacking
 - Relay RAND to victim MS and tell it to use A5/2
 - Analyse Kc from the received signal encrypted by the victim MS
 - Take Kc into use and insert your own call on the line

