1. If you flip one bit in CBC-encrypted ciphertext, how much and which part of the corresponding plaintext is affected?

2. Consider a variant of CBC which uses a constant IV (say, IV = 0). Since the IV is constant, it is not necessary to include it with the message; such a mode can be used to construct permutations on strings of length \(nm \), where \(m \) is the block length. How can you distinguish such a permutation from a random permutation in a chosen-plaintext attack?

3. Present a time / memory tradeoff known plaintext attack against an “EEEE” DES mode; a mode which uses 4 independent keys (each 56 bits; 224 total) to encrypt a 64-bit block by applying DES 4 times. An attack is considered effective if \(\max(\text{time}, \text{memory}) < 2^{224} \).