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The problem statement

• Let L be some language (set of words), let x be an (encrypted) value

• How to prove that x ∈ L without giving out any additional information?

? x is positive? x is a full square? x is prime?

• General: how to prove that “I know that x ∈ L”

• After decrypting, verifier would see x and could test that x ∈ L but it
would give more information than is often necessary
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Usage examples

• Familiar scenario: authentication

• Private key: x, public key: gx

• I want to prove you that I know the discrete logarithm of gx

• Without revealing x itself!

You already saw this scenario (identification schemes), but these schemes
were not zero-knowledge
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What is knowledge?

• Hard to define - it is easier to define what is gain of knowledge.

• I tell you 1 + 1 = 2. Do you gain knowledge?

? Most of you don’t.

• I tell you the factors of 2241 − 1. Do you gain knowledge?
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Minimizing gain of knowledge

• I prove you that I know the factors of 2241−1, without revealing them.

• I prove that two graphs G1 and G2 are isomorphic without revealing
the isomorphism.

? Graph isomorphism is a well-known hard problem

• In general: I convince you that I know something, without you getting
to know anything else but that I know this something

? ≈ zero-knowledge.
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Knowledge6=Information

Information: You are revealed an unknown object.

• Factors of 2241 − 1: no new information

• Properties of information are studied in information theory

Knowledge: You are revealed results of calculations on a publicly-known
object that you cannot derive by yourself.

• Factors of 2241 − 1: probably new knowledge

• Factors of a randomly generated 1024-bit integer: new knowledge,
assuming that factoring is hard

T-79.159 Cryptography and Data Security, 12.03.2003 Lecture 7: ZK and Commitments, Helger Lipmaa

6



Zero-knowledge: Intutition

• We talk about ZK protocols between verifier V and prover P

• Big intuition : Zero-knowledge is a property of prover P :

? Given a common input x with prover P , whatever you can calcu-
late, based on the interaction with P , you can calculate based on x

alone.

• I.e., you can simulate P .

• Proof system: P still manages to convince you that x ∈ L.
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Preliminaries

• For formal definition of ZK, one must define an interactive proof system
(IP system)

• IP system consists of two interactive machines that both have private

? (read-only) input, (read-only) random string, read-write working
space, (write-only) output

• Machines can also communicate by sending messages
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Preliminaries: Interactive Protocols

• A protocol takes several steps of communications, where in every step
one participant sends a message to another one

• An interactive protocol IP is a pair (P , V ), where at every step one
participant decides, based on the previous communication, private and
common inputs, and on the random string what would be the next input

• We assume that P is computationally unbounded

• V is computationally bounded
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Interactive proof system

Language L has an interactive proof system if there is such an interactive
machine V , so that

• ∃P , so that ∀x ∈ L, V “accepts” the common input after the IP (P , V )
with probability ≥ 2/3

• ∀P ∗, where (P ∗, V ) is an IP: For all x 6∈ L, the probability that V

“accepts” is < 1/3

• (Probabilities are taken over the coin tosses of P , V )

• Let IP be the set of languages that have IP proofs
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Example 1: Quadratic Residues

• Recall that Z∗n = {0 < x < n : gcd(x, n) = 1}.

• Quadratic residues modulo n:

QR(n) := {x ∈ Z∗n : (∃y)y2 ≡ x mod n} ,

elements that have a square root modulo n

• Quadratic nonresidues:

QNR(n) := {x ∈ Z∗n : ( 6 ∃y)y2 ≡ x mod n} .
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Example 1: Quadratic Residues

• For prime n, establishing whether x ∈ QR(n) will be trivial

• For RSA modulus n = pq, establishing whether x ∈ QR(n) is equiv-
alent to factoring n

• Quadratic Residuosity Assumption (QRA): For non-prime n and ran-
dom x ∈ Zn, establishing whether x ∈ QR(n) is hard

• We will assume n is not prime

? QRA: x ∈? QR(n) is hard
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Example 1: IP for QNR(n)

Parameter k and common input (x, n), where x ∈ QNR(n).

• V generates k random numbers zi ←R Z∗n and k random bits bi, and
sends to P the tuple

(w1, . . . , wk) ,

where wi ← x1−bi · zi
2 mod n.

• P sends to V a tuple // P is omnipotent

(c1, . . . , ck) ,

where ci ← 1 iff wi ∈ QR(n).

• V accepts that x ∈ QNR(n) iff bi = ci, ∀i
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Correctness of example 1

• If x ∈ QNR(n) then wi = x1−bi · zi
2 ∈ QR(n) ⇐⇒ bi = ci. Since

an omnipotent P can always establish whether wi ∈ QR(n), she can
also return the correct bi. Therefore, she can make V to accept with
the probability 1

• If x ∈ QR(n) then wi will be a randomly chosen quadratic residue,
independently of the value of bi. Thus the best strategy for P would
be to guess bi randomly, which means that the probability that bi = ci,
∀i, is (1/2)k

? Enlarging k will decrease this probability but will also make the
protocol less efficient
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Example 2: Graph Nonisomorphism

• Recall: A graph G is a set of vertices V (G) together with some set
E(G) ⊆ V (G)× V (G) of edges.

• Two graphs G1 and G2 are isomorphic if there exists an bijection π :

V (G1)→ V (G2), s.t.

(v, w) ∈ E(G1) ⇐⇒ (π(v), π(w)) ∈ E(G2) .

Otherwise G1 and G2 are nonisomorphic

• Define GNI := {(G1, G2) : G1 and G2 are not isomorphic}.
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Example 2: Graph Nonisomorphism

Are these two graphs nonisomorphic?
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Example 2: Graph Nonisomorphism

No! They are isomorphic: we can show an isomorphism (mapping between
the nodes).

But how to show nonisomorphism? (How to convince verifier that graphs
are nonisomorphic, without sending too much information?)
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Example 2: Graph Nonisomorphism

• A problem is in NP if we know a short witness

? For graph isomorphism (GI), we can show π

? Thus GI ∈ NP

• It is not known whether GNI ∈ NP

• We will show that GNI ∈ IP
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IP for GNI

Common input (G1, G2). Iterate the next step for i = 1 . . . k:

• V chooses a random αi ←R {1,2}, and a random graph G′i from the
set of graphs that are isomorphic to Gαi. She sends G′i to P

• (Omnipotent) P finds a graph Gβi
, s.t. Gβi

and G′i are isomorphic, and
sends βi to V

? Intuition: P can guess αi iff graphs are nonisomorphic

V accepts iff βi = αi, ∀i
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Correctness of example 2

• When (G1, G2) ∈ GNI:

? P can distinguish isomorphic copies of graph G1 from isomorphic
copies of G2; then V accepts with probability 1

• When (G1, G2) 6∈ GNI:

? An isomorphic copy of G1 is always an isomorphic copy of G2.
Thus the best strategy for P is to toss a coin, and hence the cheat-
ing probability is again (1/2)k.
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Back to ZK and formal definition

• Let us have an interactive proof system (P , V )

• viewP
V (x) — view of V when interacting with P on common input x

? viewP
V (x) is equal to the concatenation of all messages sent in this

protocol, prefixed with all random coin tosses of V

• In the previous protocol:

? (α1, . . . , αk)||(G′1, β1, . . . , G′k, βk)
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Formal definition (First try)

Definition. Let (P , V ) be an IP system for language L. (P , V ) is (per-
fect) zero-knowledge if for every machine (probabilistic polynomial-time)
machine V ∗ there exists a PPT algorithm M∗, s.t. for every x ∈ L the
following two random variables are identically distributed:

• viewP
V ∗(x) — the view of V ∗ when interacting with P .

• M∗(x) — the output of M∗.

That is, {viewP
V ∗(x)}x∈L = {M∗(x)}x∈L as a multiset.
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Details

• Too strong a requirement! No non-trivial languages have such proofs.

• Modification: M∗ can output ⊥ with probability ≤ 1
2. If M∗(x) 6= ⊥

then viewP
V ∗(x) = M∗(x). (Perfect ZK )

• Alternate modification: {viewP
V ∗(x)}x∈L and {M∗(x)}x∈L are statisti-

cally close. (Statistical ZK )

• Yet another: {viewP
V ∗(x)}x∈L and {M∗(x)}x∈L cannot be distin-

guished in probabilistic polynomial time.
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Intuition

• Perfect ZK: The distributions viewP
V ∗(x) and M∗(x) are same

• Statistical ZK: The distributions viewP
V ∗(x) and M∗(x) are close (so

that even an omnipotent adversary cannot make a difference)

• Computational ZK: The distributions viewP
V ∗(x) and M∗(x) cannot be

distinguished by a PPT adversary
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Complexity classification

The classes of languages that have computational/statistical/perfect zero-
knowledge proofs:

BPP⊂Believed that 6=PZK ⊆ SZK⊂Believed that 6=CZK = IP .

BPP ⊆ PZK: Trivial, uses no interaction: PZK can verify by himself
whether x ∈ L.

Reminder: BPP — set of problems that can be decided by probabilistic
polynomial-time Turing machines
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Example: GI ∈ PZK

P knows an isomorphism φ : G1 → G2.

1. P generates a random permutation π of G2-s vertices. She sends
G′ ← π(G2) to V .

2. V generates a random σ ← {0,1} and sends it to P .

3. If σ = 1, P sets τ ← π ◦ φ, otherwise she sets τ ← π. She sends τ

to V .

4. V checks that τ(Gσ) = G′.

Intuition: π(φ(G1)) = φ(G2) = G′.
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NP ⊆ CZK

• To show that there are CZK proofs for every NP-language, it is suffi-
cient to show a proof for one concrete NP-complete language

• A graph G can be colored with c colors when there exists an coloring
of the vertices of G with c colors so that for no edge, the vertices
connected to this edge are colored with the same color

• χ(G) - the chromatic number of G. Minimum c so that G can be
colored with c colors

• 3COL: the set of graphs with χ(G) ≤ 3. This languge is NP-
complete. Say the colors are R, G, B.
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CZK protocol for 3COL

Common input: G. P wants to prove that she knows a coloring C : V (G→
{R, G, B} in CZK. Iterate the next protocol |E(G)|2 times:

• P chooses a random permutation π of colors. She encrypts the color
π(C(v)) for every vertex v, using a probabilistic public-key cryptosys-
tem, by using a different key for every vertex. P sends to V all cipher-
texts together with the correspondence between them and the vertices

• V chooses a random edge e = (v, w) of the graph, and sends e to P

• P sends the decryption keys Dv and Dw to V

• V computes π(C(v)) and π(C(w)) and verifies that they are different
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Correctness of this protocol

• If P knows the corresponding 3-coloring, V will never detect an incor-
rectly colored edge. Thus, V will accept with probability 1

• If χ(G) > 3 then π(C(v)) = π(C(w)) in all steps with probability
≥ |E|−1. After |E|2 steps the probability that V will accept is expo-
nentially small
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Reminder: Honest-Verifier ZK

• A ZK protocol is honest-verifier, if it is required to be ZK only in the
case when the verifier follows the protocol

• Usually, in the case of HVZK protocols the verifier is only required to
send random strings

• Every ZK protocol requires at least four rounds

• HVZK is achievable in 3 rounds
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Non-Interactive ZK

• A ZK protocol is noninteractive, if it consists of only one step: prover
sending some information to verifier

• A NIZK protocol exists only if P and V have access to some common,
publicly available source of random strings (beacon)

• NIZK honest-verifier protocols exist in random-oracle model

• Many other related problems. . .
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ZK and Commitment Schemes

• ZK: done

• Commitment schemes: next
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Commitment Schemes

• P has private key K. Using this key and a random value r, she can
commit to some x by sending CK(x; r) to V

• Later, P can reveal x and V can verify that this is the value that was
previously committed

• Commitment scheme must be hiding: V will not be able to compute x

from its commitment CK(x; r)

• Commitment scheme must be binding: P cannot generate an x′ 6= x,
and an r′, s.t. CK(x; r) = CK(x′; r′)
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Application: Joint coin tossing

• Alice and Bob want to decide on something by tossing a coin over a
phone. How to do this securely?

• Solution: Alice commits to a random bit bA ←R {0,1}, and sends
CK(bA; r) to Bob

• Bob selects a random bit bB ←R {0,1} and sends it to Alice

• Alice decommits bA

• Alice and Bob compute the coin toss as bA ⊕ bB
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Pedersen commitment

Assume that p = 2q + 1 is a safe prime (i.e., q is also prime)

Set-up Let h be a generator of Gq, a subgroup of Z∗p of prime order q. Let
g ←R G

• Commitment: CK(m; r) = gmhr mod p where r ←R Zq

• Opening: reveal m and r
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Proof of security

• Unconditional hiding:

? Since r is a random element of Zq then gmhr is a random element
of G, independently of the choice of m

• Computational binding:

? Given (m; r), (m′; r′), s.t. gmhr = gm′hr′, m 6= m′, one can
compute g ← h(r−r′)/(m′−m). (This is valid since m 6= m′, q is
prime and therefore (m′ −m)−1 exists.) Therefore, the adversary
has computed the DL of g in base h

• Note that the proofs are similar to the security proofs of Schnorr’s iden-
tification scheme
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HVZK: protocols about commitments

Pedersen commitment scheme. Proof that P knows how to open y =
CK(µ; ρ):

• P generates a random n and a random s, and sends a = CK(n; s) =
gnhs to V

• V generates a random c← {0,1}t and sends c to P

• P sends z = n + cµ, w = s + cρ to V

• Verifier checks that CK(z;w)
?
= ayc.

We saw security proofs for such protocols during the last lecture
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Notation

• The proof in last slide is called proof of knowledge

• Denoted: PK(y = CK(µ; ρ))

• Greek letters denote variables, knowledge of which is to be proved

• Other letters denote variables that are either in public knowledge or
secretly owned by some party

• Another example: PK(y = CK(µ; ρ) ∧ µ 6= 0) (proof of knowledge
of committed non-zero message µ)
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Why commitments are good for ZK?

• Design a 3-round HVZK protocol between P and V : P sends the first
and the third steps, V sends a random string on the second step.

• In practice, hard to guarantee that V does not cheat

• Solution:

? V selects his response c and commits to it before seeing P ’s first
messages

? P sends then her first message, V opens his commitment, and P

sends her second message
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Advanced example: Auctions

Lipmaa, Asokan, Niemi. Secure Vickrey Auctions without Threshold Trust.
Financial Cryptography 2002. Bermuda.
http://www.tcs.hut.fi/˜helger/papers/

• You have a limited number of options: bidding µ ∈ [0, H]

• You bid by encrypting your bid and sending it to some center

• Goal: seller S should not be able to decrypt your bid; but she should
get to know the highest bid

• Solution: Encrypt by using the public key of another center A but send
encryption to S
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Advanced example: Auctions, 2

• Assume E is homomorphic: EK(m)EK(m′) = EK(m + m′)

• Instead of bid µ, encrypt Bµ, where B is the maximum number of
bidders

• S multiplies all ciphertexts, obtaining c ← EK(
∑

i Bµi). Due to the
choice of B, this is equal to EK(

∑
j αjB

j), where αj is the number of
bidders who bid j

• S sends c to A, who decrypts c, and obtains all values αj. A calculates
the highest bid X1 = maxj(αj 6= 0), and sends it to S

• S announces X1 to bidders
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Advanced example: Auctions, 3

• Nice protocol, but works only when different parties are honest

• Standard solution: Add a ZK proof that every step was correct

? Used in many cryptographic protocols!

• Every bidder proves that it encrypted a valid bid Bµ, µ ∈ [0, H]

• And: A proves that A computed X1 correctly
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PK(y = EK(Bµ; ρ) ∧ (µ ∈ [0, H]))

• Denote Hj := b(H + 2j)/2j+1c, j = 0 . . . blog2 Hc. Then

µ ∈ [0, H] ⇐⇒ µ =
blog2 Hc∑

j=0

µjHj for some µj ∈ {0,1} . (1)

• For example, µ ∈ [0,10] ⇐⇒ µ = 5µ0 + 3µ1 + µ2 + µ3 and
µ ∈ [0,9] ⇐⇒ µ = 5µ0 + 2µ1 + µ2 + µ3.

• ZK proof idea: show in ZK that you know µj for which the right side (1)
holds (“oblivious binary search”)
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How to prove that X1 is correct?

• You have

y = EK(
∑
j

αjB
j) .

You must show that if j > X1 then αj = 0 and if j = X1 then αj > 0.

• Thus, this is equal to the proof that

PK(y = EK(µ; ρ) ∧ µ = BX1 + µ2 ∧ µ2 < BX1+1) .
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Security properties

If A and S do not cooperate:

• A will not be able to change the highest bid or bidder

• S will not get to know anything about the bids

• A will know the statistics (how many bid j) but no individual bids

• System can be strengthened: even cooperating A and S will not be
able to change the highest bid or bidder
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E-voting

• E-voting: can do analogously. Bidder = voter, bid = vote

• S must get to know αj, so instead of X1 a ZK proof of its correctness
A will send to her the sum

∑
j αjB

j (simpler!)

• Problem: Can we trust that S and A do not to cooperate?

• If not, another possibility is to share the trust among a larger number
of authorities
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Next lecture

• Secret sharing: How to guarantee that the secret can be recovered
only by priviledged sets of users?

• Threshold trust: How to guarantee in general that some system will
remain secure if a majority of servers are trustworthy?

• Multi-party computation: Everything can be computed securely by us-
ing a secret-sharing approach

T-79.159 Cryptography and Data Security, 12.03.2003 Lecture 7: ZK and Commitments, Helger Lipmaa

47


