T-79.159 Cryptography and Data Security

Lecture 7: ZK and Commitments

Helger Lipmaa Helsinki University of Technology helger@tcs.hut.fi

The problem statement

- Let L be some language (set of words), let x be an (encrypted) value
- How to prove that $x \in L$ without giving out any additional information?
 - $\star x$ is positive? x is a full square? x is prime?
- General: how to prove that "I know that $x \in L$ "
- After decrypting, verifier would see x and could test that $x \in L$ but it would give more information than is often necessary

Usage examples

- Familiar scenario: authentication
- Private key: \boldsymbol{x} , public key: $g^{\boldsymbol{x}}$
- I want to prove you that I know the discrete logarithm of g^x
- Without revealing *x* itself!

You already saw this scenario (identification schemes), but these schemes were not zero-knowledge

What is knowledge?

- Hard to define it is easier to define what is gain of knowledge.
- I tell you 1 + 1 = 2. Do you gain knowledge?

* Most of you don't.

• I tell you the factors of $2^{2^{41}} - 1$. Do you gain knowledge?

Minimizing gain of knowledge

- I prove you that I know the factors of $2^{2^{41}} 1$, without revealing them.
- I prove that two graphs *G*₁ and *G*₂ are isomorphic without revealing the isomorphism.
 - * Graph isomorphism is a well-known hard problem
- In general: I convince you that I know something, without you getting to know anything else but that I know this something

 $\star \approx$ zero-knowledge.

$Knowledge \neq Information$

Information: You are revealed an unknown object.

- Factors of $2^{2^{41}} 1$: no new information
- Properties of information are studied in information theory

Knowledge: You are revealed results of calculations on a publicly-known object that you cannot derive by yourself.

- Factors of $2^{2^{41}} 1$: probably new knowledge
- Factors of a randomly generated 1024-bit integer: new knowledge, assuming that factoring is hard

Zero-knowledge: Intutition

- We talk about *ZK protocols* between verifier V and prover P
- **Big intuition**: Zero-knowledge is a property of prover *P*:
 - * Given a common input x with prover P, whatever you can calculate, based on the interaction with P, you can calculate based on x alone.
- I.e., you can simulate *P*.
- *Proof system*: *P* still manages to convince you that $x \in L$.

Preliminaries

- For formal definition of ZK, one must define an *interactive proof system* (IP system)
- IP system consists of two interactive machines that both have private
 - * (read-only) input, (read-only) random string, read-write working space, (write-only) output
- Machines can also communicate by sending messages

Preliminaries: Interactive Protocols

- A protocol takes several steps of communications, where in every step one participant sends a message to another one
- An interactive protocol IP is a pair (P, V), where at every step one participant decides, based on the previous communication, private and common inputs, and on the random string what would be the next input
- We assume that *P* is computationally unbounded
- *V* is computationally bounded

Interactive proof system

Language L has an *interactive proof system* if there is such an interactive machine V, so that

- $\exists P$, so that $\forall x \in L, V$ "accepts" the common input after the IP (P, V) with probability $\geq 2/3$
- ∀P*, where (P*, V) is an IP: For all x ∉ L, the probability that V "accepts" is < 1/3
- (Probabilities are taken over the coin tosses of P, V)
- Let IP be the set of languages that have IP proofs

Example 1: Quadratic Residues

- Recall that $\mathbb{Z}_n^* = \{ 0 < x < n : gcd(x, n) = 1 \}.$
- Quadratic residues modulo *n*:

$$QR(n) := \{x \in \mathbb{Z}_n^* : (\exists y)y^2 \equiv x \mod n\}$$
,

elements that have a square root modulo n

• Quadratic nonresidues:

$$QNR(n) := \{x \in \mathbb{Z}_n^* : (\not\exists y)y^2 \equiv x \mod n\}$$

Example 1: Quadratic Residues

- For prime n, establishing whether $x \in QR(n)$ will be trivial
- For RSA modulus n = pq, establishing whether x ∈ QR(n) is equivalent to factoring n
- Quadratic Residuosity Assumption (QRA): For non-prime n and random x ∈ Z_n, establishing whether x ∈ QR(n) is hard
- We will assume *n* is not prime

★ QRA: $x \in ?$ QR(n) is hard

Example 1: IP for QNR(n)

Parameter k and common input (x, n), where $x \in QNR(n)$.

• *V* generates *k* random numbers $z_i \leftarrow_R \mathbb{Z}_n^*$ and *k* random bits b_i , and sends to *P* the tuple

$$(w_1,\ldots,w_k)$$
,

where $w_i \leftarrow x^{1-b_i} \cdot z_i^2 \mod n$.

- P sends to V a tuple $/\!\!/ P$ is omnipotent (c_1,\ldots,c_k) , where $c_i \leftarrow 1$ iff $w_i \in \mathsf{QR}(n).$
- V accepts that $x \in QNR(n)$ iff $b_i = c_i, \forall i$

Correctness of example 1

- If $x \in QNR(n)$ then $w_i = x^{1-b_i} \cdot z_i^2 \in QR(n) \iff b_i = c_i$. Since an omnipotent P can always establish whether $w_i \in QR(n)$, she can also return the correct b_i . Therefore, she can make V to accept with the probability 1
- If x ∈ QR(n) then w_i will be a randomly chosen quadratic residue, independently of the value of b_i. Thus the best strategy for P would be to guess b_i randomly, which means that the probability that b_i = c_i, ∀i, is (1/2)^k
 - \star Enlarging k will decrease this probability but will also make the protocol less efficient

- Recall: A graph G is a set of vertices V(G) together with some set
 E(G) ⊆ V(G) × V(G) of edges.
- Two graphs G₁ and G₂ are *isomorphic* if there exists an bijection π :
 V(G₁) → V(G₂), s.t.

 $(v,w) \in E(G_1) \iff (\pi(v),\pi(w)) \in E(G_2)$.

Otherwise G_1 and G_2 are nonisomorphic

• Define GNI := { (G_1, G_2) : G_1 and G_2 are not isomorphic}.

Are these two graphs nonisomorphic?

No! They are isomorphic: we can show an isomorphism (mapping between the nodes).

But how to show nonisomorphism? (How to convince verifier that graphs are nonisomorphic, without sending too much information?)

- $\bullet\,$ A problem is in ${\bf NP}$ if we know a short witness
 - $\star\,$ For graph isomorphism (GI), we can show $\pi\,$
 - \star Thus $GI \in \mathbf{NP}$
- It is not known whether $\mathsf{GNI} \in \mathbf{NP}$
- We will show that $\mathsf{GNI} \in \mathbf{IP}$

IP for GNI

Common input (G_1, G_2) . Iterate the next step for $i = 1 \dots k$:

- V chooses a random α_i ←_R {1, 2}, and a random graph G'_i from the set of graphs that are isomorphic to G_{α_i}. She sends G'_i to P
- (Omnipotent) *P* finds a graph G_{β_i} , s.t. G_{β_i} and G'_i are isomorphic, and sends β_i to *V*

* Intuition: *P* can guess α_i iff graphs are nonisomorphic

V accepts iff $\beta_i = \alpha_i$, $\forall i$

Correctness of example 2

- When $(G_1, G_2) \in \text{GNI}$:
 - * *P* can distinguish isomorphic copies of graph G_1 from isomorphic copies of G_2 ; then *V* accepts with probability 1
- When $(G_1, G_2) \not\in \text{GNI}$:
 - * An isomorphic copy of G_1 is always an isomorphic copy of G_2 . Thus the best strategy for P is to toss a coin, and hence the cheating probability is again $(1/2)^k$.

Back to ZK and formal definition

- Let us have an interactive proof system (P, V)
- view $\frac{P}{V}(x)$ view of V when interacting with P on common input x
 - * view $\frac{P}{V}(x)$ is equal to the concatenation of all messages sent in this protocol, prefixed with all random coin tosses of V
- In the previous protocol:

$$\star (\alpha_1, \ldots, \alpha_k) || (G'_1, \beta_1, \ldots, G'_k, \beta_k)$$

Formal definition (First try)

Definition. Let (P, V) be an IP system for language L. (P, V) is (perfect) *zero-knowledge* if for every machine (probabilistic polynomial-time) machine V^* there exists a PPT algorithm M^* , s.t. for every $x \in L$ the following two random variables are identically distributed:

- view $\frac{P}{V^*}(x)$ the view of V^* when interacting with P.
- $M^*(x)$ the output of M^* .

That is, $\{\text{view}_{V^*}^P(x)\}_{x \in L} = \{M^*(x)\}_{x \in L}$ as a multiset.

Details

- Too strong a requirement! No non-trivial languages have such proofs.
- Modification: M^* can output \perp with probability $\leq \frac{1}{2}$. If $M^*(x) \neq \perp$ then view $\frac{P}{V^*}(x) = M^*(x)$. (*Perfect ZK*)
- Alternate modification: {view^P_{V*}(x)}_{x∈L} and {M*(x)}_{x∈L} are statistical ZK
- Yet another: $\{\text{view}_{V^*}^P(x)\}_{x \in L}$ and $\{M^*(x)\}_{x \in L}$ cannot be distinguished in probabilistic polynomial time.

Intuition

- Perfect ZK: The distributions view $\frac{P}{V^*}(x)$ and $M^*(x)$ are same
- Statistical ZK: The distributions view $_{V^*}^P(x)$ and $M^*(x)$ are close (so that even an omnipotent adversary cannot make a difference)
- Computational ZK: The distributions view $_{V^*}^P(x)$ and $M^*(x)$ cannot be distinguished by a PPT adversary

Complexity classification

The classes of languages that have computational/statistical/perfect zeroknowledge proofs:

 $BPP \underline{\subseteq}_{\text{Believed that}} \neq PZK \subseteq SZK \underline{\subseteq}_{\text{Believed that}} \neq CZK = IP \ .$

BPP \subseteq **PZK**: Trivial, uses no interaction: **PZK** can verify by himself whether $x \in L$.

Reminder: **BPP** — set of problems that can be decided by probabilistic polynomial-time Turing machines

Example: $GI \in PZK$

P knows an isomorphism ϕ : $G_1 \rightarrow G_2$.

- 1. *P* generates a random permutation π of G_2 -s vertices. She sends $G' \leftarrow \pi(G_2)$ to *V*.
- 2. *V* generates a random $\sigma \leftarrow \{0, 1\}$ and sends it to *P*.
- 3. If $\sigma = 1$, *P* sets $\tau \leftarrow \pi \circ \phi$, otherwise she sets $\tau \leftarrow \pi$. She sends τ to *V*.
- 4. V checks that $\tau(G_{\sigma}) = G'$.

Intuition: $\pi(\phi(G_1)) = \phi(G_2) = G'$. T-79.159 Cryptography and Data Security, 12.03.2003 Lecture 7: ZK and Commitments, Helger Lipmaa

$NP \subseteq CZK$

- To show that there are CZK proofs for every NP-language, it is sufficient to show a proof for one concrete NP-complete language
- A graph *G* can be colored with *c* colors when there exists an coloring of the vertices of *G* with *c* colors so that for no edge, the vertices connected to this edge are colored with the same color
- $\chi(G)$ the chromatic number of *G*. Minimum *c* so that *G* can be colored with *c* colors
- 3*COL*: the set of graphs with $\chi(G) \leq 3$. This language is NP-complete. Say the colors are R, G, B.

CZK protocol for 3COL

Common input: G. P wants to prove that she knows a coloring $C : V(G \rightarrow \{R, G, B\})$ in CZK. Iterate the next protocol $|E(G)|^2$ times:

- *P* chooses a random permutation π of colors. She encrypts the color $\pi(C(v))$ for every vertex v, using a probabilistic public-key cryptosystem, by using a different key for every vertex. *P* sends to *V* all ciphertexts together with the correspondence between them and the vertices
- V chooses a random edge e = (v, w) of the graph, and sends e to P
- *P* sends the decryption keys D_v and D_w to *V*
- V computes $\pi(C(v))$ and $\pi(C(w))$ and verifies that they are different

Correctness of this protocol

- If *P* knows the corresponding 3-coloring, *V* will never detect an incorrectly colored edge. Thus, *V* will accept with probability 1
- If $\chi(G) > 3$ then $\pi(C(v)) = \pi(C(w))$ in all steps with probability $\geq |E|^{-1}$. After $|E|^2$ steps the probability that V will accept is exponentially small

Reminder: Honest-Verifier ZK

- A ZK protocol is *honest-verifier*, if it is required to be ZK only in the case when the verifier follows the protocol
- Usually, in the case of HVZK protocols the verifier is only required to send random strings
- Every ZK protocol requires at least four rounds
- HVZK is achievable in 3 rounds

Non-Interactive ZK

- A ZK protocol is noninteractive, if it consists of only one step: prover sending some information to verifier
- A NIZK protocol exists only if *P* and *V* have access to some common, publicly available source of random strings (beacon)
- NIZK honest-verifier protocols exist in random-oracle model
- Many other related problems...

ZK and Commitment Schemes

- ZK: done
- Commitment schemes: next

Commitment Schemes

- *P* has private key *K*. Using this key and a random value *r*, she can *commit* to some *x* by sending $C_K(x; r)$ to *V*
- Later, *P* can reveal *x* and *V* can verify that this is the value that was previously committed
- Commitment scheme must be *hiding*: V will not be able to compute x from its commitment $C_K(x; r)$
- Commitment scheme must be *binding*: *P* cannot generate an $x' \neq x$, and an r', s.t. $C_K(x; r) = C_K(x'; r')$

Application: Joint coin tossing

- Alice and Bob want to decide on something by tossing a coin over a phone. How to do this securely?
- Solution: Alice commits to a random bit $b_A \leftarrow_R \{0,1\}$, and sends $C_K(b_A;r)$ to Bob
- Bob selects a random bit $b_B \leftarrow_R \{0, 1\}$ and sends it to Alice
- Alice decommits b_A
- Alice and Bob compute the coin toss as $b_A \oplus b_B$

Pedersen commitment

Assume that p = 2q + 1 is a safe prime (i.e., q is also prime)

Set-up Let h be a generator of G_q , a subgroup of \mathbb{Z}_p^* of prime order q. Let $g \leftarrow_R G$

- Commitment: $C_K(m; r) = g^m h^r \mod p$ where $r \leftarrow_R \mathbb{Z}_q$
- Opening: reveal m and r

Proof of security

- Unconditional hiding:
 - * Since r is a random element of \mathbb{Z}_q then $g^m h^r$ is a random element of G, independently of the choice of m
- Computational binding:
 - * Given (m; r), (m'; r'), s.t. $g^m h^r = g^{m'} h^{r'}$, $m \neq m'$, one can compute $g \leftarrow h^{(r-r')/(m'-m)}$. (This is valid since $m \neq m'$, q is prime and therefore $(m'-m)^{-1}$ exists.) Therefore, the adversary has computed the DL of g in base h
- Note that the proofs are similar to the security proofs of Schnorr's identification scheme

HVZK: protocols about commitments

Pedersen commitment scheme. Proof that *P* knows how to open $y = C_K(\mu; \rho)$:

- P generates a random n and a random s, and sends $a = C_K(n; s) = g^n h^s$ to V
- V generates a random $c \leftarrow \{0, 1\}^t$ and sends c to P
- *P* sends $z = n + c\mu$, $w = s + c\rho$ to *V*
- Verifier checks that $C_K(z; w) \stackrel{?}{=} ay^c$.

We saw security proofs for such protocols during the last lecture T-79.159 Cryptography and Data Security, 12.03.2003 Lecture 7: ZK and Commitments, Helger Lipmaa

Notation

- The proof in last slide is called *proof of knowledge*
- Denoted: $PK(y = C_K(\mu; \rho))$
- Greek letters denote variables, knowledge of which is to be proved
- Other letters denote variables that are either in public knowledge or secretly owned by some party
- Another example: $PK(y = C_K(\mu; \rho) \land \mu \neq 0)$ (proof of knowledge of committed non-zero message μ)

Why commitments are good for ZK?

- Design a 3-round HVZK protocol between P and V: P sends the first and the third steps, V sends a random string on the second step.
- In practice, hard to guarantee that V does not cheat
- Solution:
 - $\star~V$ selects his response c and commits to it before seeing P's first messages
 - $\star P$ sends then her first message, V opens his commitment, and P sends her second message

Advanced example: Auctions

Lipmaa, Asokan, Niemi. Secure Vickrey Auctions without Threshold Trust. Financial Cryptography 2002. Bermuda. http://www.tcs.hut.fi/~helger/papers/

- You have a limited number of options: bidding $\mu \in [0, H]$
- You bid by encrypting your bid and sending it to some center
- Goal: seller *S* should not be able to decrypt your bid; but she should get to know the highest bid
- Solution: Encrypt by using the public key of another center ${\cal A}$ but send encryption to ${\cal S}$

Advanced example: Auctions, 2

- Assume E is homomorphic: $E_K(m)E_K(m') = E_K(m+m')$
- Instead of bid μ , encrypt B^{μ} , where B is the maximum number of bidders
- S multiplies all ciphertexts, obtaining $c \leftarrow E_K(\sum_i B^{\mu_i})$. Due to the choice of B, this is equal to $E_K(\sum_j \alpha_j B^j)$, where α_j is the number of bidders who bid j
- S sends c to A, who decrypts c, and obtains all values α_j . A calculates the highest bid $X_1 = \max_j (\alpha_j \neq 0)$, and sends it to S
- S announces X_1 to bidders

Advanced example: Auctions, 3

- Nice protocol, but works only when different parties are honest
- Standard solution: Add a ZK proof that every step was correct
 - * Used in many cryptographic protocols!
- Every bidder proves that it encrypted a valid bid B^{μ} , $\mu \in [0, H]$
- And: A proves that A computed X_1 correctly

$\underline{PK(y = E_K(B^{\mu}; \rho) \land (\mu \in [0, H]))}$

• Denote $H_j := \lfloor (H+2^j)/2^{j+1} \rfloor$, $j = 0 \dots \lfloor \log_2 H \rfloor$. Then

$$\mu \in [0, H] \iff \mu = \sum_{j=0}^{\lfloor \log_2 H \rfloor} \mu_j H_j \text{ for some } \mu_j \in \{0, 1\} \text{ . (1)}$$

- For example, $\mu \in [0, 10] \iff \mu = 5\mu_0 + 3\mu_1 + \mu_2 + \mu_3$ and $\mu \in [0, 9] \iff \mu = 5\mu_0 + 2\mu_1 + \mu_2 + \mu_3$.
- ZK proof idea: show in ZK that you know μ_j for which the right side (1) holds ("oblivious binary search")

How to prove that X_1 is correct?

• You have

$$y = E_K(\sum_j \alpha_j B^j)$$

You must show that if $j > X_1$ then $\alpha_j = 0$ and if $j = X_1$ then $\alpha_j > 0$.

• Thus, this is equal to the proof that

$$PK(y = E_K(\mu; \rho) \land \mu = B^{X_1} + \mu_2 \land \mu_2 < B^{X_1+1})$$

Security properties

If A and S do not cooperate:

- A will not be able to change the highest bid or bidder
- S will not get to know anything about the bids
- A will know the statistics (how many bid j) but no individual bids
- System can be strengthened: even cooperating *A* and *S* will not be able to change the highest bid or bidder

E-voting

- E-voting: can do analogously. Bidder = voter, bid = vote
- S must get to know α_j , so instead of X_1 a ZK proof of its correctness A will send to her the sum $\sum_j \alpha_j B^j$ (simpler!)
- Problem: Can we trust that *S* and *A* do not to cooperate?
- If not, another possibility is to share the trust among a larger number of authorities

Next lecture

- Secret sharing: How to guarantee that the secret can be recovered only by priviledged sets of users?
- Threshold trust: How to guarantee in general that some system will remain secure if a majority of servers are trustworthy?
- Multi-party computation: Everything can be computed securely by using a secret-sharing approach