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Outline

• Computational complexity

• Reminder about basic number theory

• Factoring

• Discrete logarithm

• Elliptic curve discrete logarithm

(Some items are partially repeat of the last lecture)
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Computational complexity

I will give asymptotic estimates for the complexity of many of the algo-
rithms. Remember: Most complexity numbers in cryptology are actually
conjectures (i.e. educated guesses).

The complexity measurements are often based on experimentation and
heuristics, and simply give an estimate of the expected running time. Most
of these algorithms are not deterministic; they can be expected to work in
most cases but there may be pathological cases where they in fact do not
terminate.

However, if you’re trying to break a cipher, it doesn’t matter what you use
as long as it WORKS!
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Basic complexities

• Modular multiplication: Schoolboy method, roughly O(l2) (although
faster methods exist, based on Karatsuba’s method, FFT, etc).

• Greatest common divisor (gcd): Euclid’s method, roughly O(l3).

• Modular inversion: Extended Euclid’s method, roughly O(l3).

• Modular exponentiation: Square-and-multiply, roughly O(l3).

• Elliptic curve addition: with clever programming, O(l2).
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Elementary number theory

The fundamental theorem of arithmetic (Euclid) states that any positive in-
teger can be represented in exactly one way as a product of prime numbers
(if we ignore the order).

e.g. 6 = 2 ∗ 3, 48 = 24 ∗ 3.

The first primes are 2,3,5,7,11,13,19, · · ·

Density of primes around n is roughly 1/ ln(n) ("Prime number theorem").
This means that if we are looking for, say, 1024-bit prime, there is a prob-
ability of 1/ ln(21024) = 1/709.8 that a random number is a prime.
Hence we must test about 500 candidates before we can truly find a prime
(of course we can sieve out even numbers etc, which will speed up the
search).
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Fermat’s "little" theorem

Let p be a prime which does not divide the integer a, then
ap−1 ≡ 1 (mod p).

The inverse is almost true; there is an extremely high probability (for large
n) that if 2n−1 ≡ 1 (mod n), then n is a prime.

For cryptology probable primes are perfectly acceptable, and e.g. only this
Fermat test is used in search of primes.

Complexity of deterministic primality test has been recently proved to be
Polynomial (Agrawal, Kayal, Saxena: "PRIMES is in P", 2002). However,
this O(l7.5) algorithm has little practical effect to cryptography.

T-79.159 Cryptography and Data Security, 03.03.2004 Lecture 6: Cryptanalysis of public-key algorithms.,

Markku-Juhani O. Saarinen

6



A Group

A finite group is a set of elements together with a binary operation (group
operation) that satisfies:

• Closure: a + b is in the set if a and b are in the set.

• Associativity: (a + b) + c = a + (b + c).

• Identity: There exists an element o that satisfies a + o = o + a = a.

• Inverse: Every element has an inverse a− a = o.
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Examples of a group

• Elements 0 and 1 together with XOR operation.

• Addition modulo n, where n is any positive integer.

• Multiplication modulo p, where p is a prime number.

• Group formed by an elliptic curve together with the addition rule (pre-
vious lecture).
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Factoring

The task of splitting a number n into its prime components n = pq.

"The problem of distinguishing prime numbers from composites
and of resolving composite numbers into their prime factors, is
one of the most important and useful in all of arithmetic.

. . . The dignity of science seems to demand that every aid to the
solution of such an elegant and celebrated problem be zealously
cultivated."

– C.F. Gauss, Disquisitiones Arithmeticae, Article 329 (1801)
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Factoring and RSA

It is clear that if the public modulus n can be factored, then RSA is broken.

However it has not been proved that if a method exists to solve the RSA
problem, it can also be used to factor numbers.

Hence the RSA problem is not equivalent to factoring!

.. but it seems that factoring algorithms are the easiest method of breaking
RSA (other than implementation attacks).
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Trial division

Even the greatest mathematicians of 1800’s still used trial division to factor
numbers.

"Mr. Landry, at the age of 82, after several months work in 1880
obtained the following result:

264 + 1 = 274177 ∗ 67280421310721".

– Édouard Lucas, Récrétaions Mathématiques (1891)

He may have used some tools to speed up his hand computation but the
complexity of his method was still O(

√
n).
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Pollard’s ρ factoring

1. x← random number 2 · · ·n− 1, y ← x, k ← 1

2. for i = 1,2,3, · · · do:

3. x← (x2 − 1) mod n

4. d← gcd(y − x, n).

5. if d 6= 1 and d 6= n print d

6. if i = k then y ← x, k ← 2k.
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Pollard’s ρ factoring complexity

The choice of polynomial x2 − 1 is arbitrary (but e.g. x− 1 or x2 wouldn’t
work).

This is an Heuristic method based on the birthday paradox.

If a "match" occurs mod mod p, then it is caught by the gcd.

Complexity O(n1/4) – non-deterministic.

The best known deterministic factoring algorithms have the same complex-
ity as this extremely simple algorithm!
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First sub-exponential algorithms

Most modern factoring algorithms attempt to find integers x and y such
that

x2 ≡ y2 (mod n)

In case there’s a 50 % chance that gcd(n, x− y) will yield a factor of n.

The algorithms generally consist of two stages.

1. Sieving step: Find "relations" (easily distributable)

2. Matrix step: Linear algebra phase (not easily distributable)
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Factoring algorithms

The development has followed the following path:

• CFRAC: Continued fraction algorithm (mid 70s)

• MPQS: Multiple Polynomial Quadratic Sieve (mid 80s)

• GNFS: General Number Field Sieve (mid 90s)

GNFS is the current champion. There is no guarantee that it is the best
possible algorithm!
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GNFS complexity

Current heuristic estimates place the complexity of GNFS at:

O(e(1.9229+O(1))∗ln(n)1/3∗ln(ln(n))2/3
)

Where n is the number to be factored and we assume that it is a product
of two large primes ("RSA number").

Note1: It is much easier to factor a random number than it is to factor
a RSA number. With non-neglible probability it will be a prime and no
factorization is necessary!

Note2: GNFS starts to beat MPQS only after n > 2500 !
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Elliptic Curve Method (ECM)

A different approach is taken by the ECM algorithm, which is based on
elliptic curves. Its complexity is:

O(e
√

ln(p) ln(ln(p))(1+O(1))

Where p | n is the smallest factor. In other words, the complexity of ECM is
related to the size of the component, not the size of the whole composite
n.

A good policy for factoring large random numbers is to start with ECM
and then move to MPQS when we expect the remaining unfactored part to
consist of large primes...
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Discrete logarithm (DL)

The task of finding the index of an element in a finite group.

Example: in the multiplicative group of numbers modulo p, given a and the
generator g, find the index x that satisfies

gx ≡ a (mod p)

If g is indeed the generator of the group, such x will always exist and is
unique.

Numerous public key algorithms are based on discrete log problem: Diffie-
Hellman, ElGamal, DSA, ECDSA, etc..

T-79.159 Cryptography and Data Security, 03.03.2004 Lecture 6: Cryptanalysis of public-key algorithms.,

Markku-Juhani O. Saarinen

18



DL Example

g = 3 is the smallest generator when p = 7.

30 = 1 mod 7

31 = 3 mod 7

32 = 2 mod 7

33 = 6 mod 7

34 = 4 mod 7

35 = 5 mod 7

36 = 1 mod 7

· · ·

We see that the discrete logarithm of 6 with generator 3 is 3.
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DL properties

Discrete logs satisfy all the normal properties of logarithms:

ga ∗ gb ≡ ga+b (1)

ga/gb ≡ ga−b (2)

(ga)b = (gb)a ≡ gab (3)

g−a ∗ ga ≡ 1 (4)

Observation 3 is in fact at the heart of Diffie-Hellman key exchange..
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DL for groups

The obvious trial division algorithm for a general group has O(n) complex-
ity and is clearly not acceptable.

However, a version exists of Pollard’s ρ method which can be used to com-
pute discrete logs in O(

√
n) time. This is relatively straight-forward to de-

rive. The method is (again) based on the birthday paradox.

In fact Shoup proved in 1997 that no algorithm can be faster than this, if it
is not allowed to utilize properties of the representation of the group.

T-79.159 Cryptography and Data Security, 03.03.2004 Lecture 6: Cryptanalysis of public-key algorithms.,

Markku-Juhani O. Saarinen

21



Pollard’s ρ DL

The group G is partitioned into three sets S1, S2, S3 of roughly equal size.
We define a sequence x1, x2, · · · as:

xi+1 =


β ∗ xi whenxi ∈ S1
x2

i whenxi ∈ S2
α ∗ xi whenxi ∈ S3

Here α is the generator and β is the number of which discrete logarithm
we are trying to determine. This sequence then defines two sequences of
integers ai and bi satisfying xi = αaiβbi.
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Pollard’s ρ DL (2)

ai+1 =


ai mod n whenai ∈ S1
2ai mod n whenai ∈ S2
ai + 1 mod n whenai ∈ S3

and

bi+1 =


bi + 1 mod n whenbi ∈ S1
2bi mod n whenbi ∈ S2
bi mod n whenbi ∈ S3

Here n is the group size and a0 = b0 = 0.
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Pollard’s ρ DL (3)

We use Floyd’s cycle-finding algorithm (lecture 4) to find two group ele-
ments xi and x2i such that xi = x2i.

Hence αaiβbi = αa2iβb2i, and it follows that βbi−b2i = αa2i−ai. Taking
logs we get:

(bi − b2i) ∗ logα β ≡ (a2i − ai) (mod n)

This equation the quickly yields the discrete logarithm logα β.
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More on Discrete Logs

The problem of finding discrete logarithms in an elliptic curve group (ECDL)
appears to be as hard as DL in general group; O(

√
n) algorithms are the

best known ones. However, this has not been proved.

For the problem of finding DL in the group of integers modulo p more effi-
cient methods exist, and they are based on the representation of the group.
The methods (Index Calculus method, Number Field Sieve DL) are analo-
gous to the best known factorization methods and their complexity roughly
the same.

Some algorithms (most notably DSA) are based on subgroup discrete log-
arithm method, where it is possible to use the general all-purpose DL algo-
rithms in the subgroup, but also utilize the representation. DSA is designed
to make the security margin against both of these attacks similar (1024-bit
p, 160-bit subgroup).
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Putting it all together

Symmetric Hashes RSA Elliptic curve
56 112 417 112
64 128 682 128
80 160 1464 160

100 200 3137 200

Key sizes in each row correspond to each other in terms of security.

Currently a 2048-bit RSA key, 128-bit AES key, 256-bit SHA256 hash and
256-bit elliptic curve fields are considered secure for all foreseeable future.

Note: The security of the cryptosystem (as a whole) = the security of the
weakest component.
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