T-79.159 Cryptography and Data Security

Lecture 5: Public-Key Algorithms

Helger Lipmaa Helsinki University of Technology helger@tcs.hut.fi

Recap: what we have done

- First lecture: general overview
- Second lecture: secret-key cryptography
- Third lecture: Modes of operation
- Fourth lecture: Hash functions Lectures 2–4 are all about secret-key cryptography!
- Today: Public-key algorithms

Problems of symmetric model (1/3)

- Alice and Bob need to share a key
 - * distributed over a private channel
 - \star say, when they meet in a pub
- Private channels are very expensive
 - * especially in Finland

Problems of symmetric model (2/3)

Huge number of keys when scaling:

- *n* parties need to communicate secretly with everybody else
- Every pair needs a secret key, there are $\binom{n}{2} = \frac{n^2 n}{2}$ pairs
- Thus, $\frac{n^2-n}{2}$ keys must be pre-distributed!
- Every participant needs to store n different keys

• Say,
$$n = 6 \cdot 10^9 \dots$$

Problems of symmetric model (2/3)

Non-repudiation:

- You can authenticate yourself and your messages to your friends by using MAC=s
- However, MAC-s use shared key
- Therefore, you cannot prove to third parties that messages were really sent by your friend and not by yourself!

Public key cryptography: mysterious helper

- All mentioned problems can be solved by using PKC
- Basic idea: everybody has a pair (pk, sk) of public and secret keys
- If you want to send to me a message, you
 - $\star\,$ a) fetch my pk from a directory, b) encrypt a message by pk and c) send the result to me
- I will decrypt the ciphertext by using my secret key

PKC: model

PKC: model

Alice obtains public key from an *authenticated* channel, no privacy during this is necessary!

Public-Key Cryptography: Assumptions

- PKC bases on clear mathematics
 - \star Existence of <u>one-way functions</u>, and related primitives
- "Crazy" solutions (AES-like or DES-like) are not accepted
- IMPORTANT: PKC bases on the assumption that there is *one* OWF Caveat: Real assumptions are slightly more complicated
- If this OWF gets "broken", it can be substituted with another one assuming that OWFs exist

Etude: Elementary mathematics (1/2)

- For any integer n, $\mathbb{Z}_n = \{0, \dots, n-1\}$
- \mathbb{Z}_n is an additive group: $a + b = c \mod n$. E.g., $7 + 12 = 19 \equiv 6 \mod 13$, thus $7 + 12 = 6 \mod \mathbb{Z}_{13}$
- Analogously, modular multiplication: $7 \cdot 12 = 84 \equiv 6 \mod 13$
- \mathbb{Z}_n is not a multiplicative group:
 - \star not all elements of \mathbb{Z}_n have inverses

(Known from the discrete mathematics course)

Etude: Elementary mathematics (2/2)

- y is inverse of x modulo n iff $xy = 1 \mod n$
- Elementary: x has an inverse iff gcd(x, n) = 1
- E.g., $4^{-1} \equiv 10 \mod 13$ since $4 \cdot 10 = 40 \equiv 1 \mod 13$, but 4 does not have an inverse modulo 12, since $gcd(4, 12) = 4 \neq 1$
- For any integer *n*,

$$\mathbb{Z}_n^* = \{ x \in \mathbb{Z}_n : x \text{ has an inverse modulo } n \} \\= \{ x \in \mathbb{Z}_n : \gcd(x, n) = 1 \}$$

• Euler's totient function $\varphi(n) := \sharp \mathbb{Z}_n^* = \sharp \{x \in \mathbb{Z}_n : \gcd(x, n) = 1\}$

RSA Cryptosystem

- The first PKC (Rivest, Adleman, Shamir, 1977)
- Still the most used public-key cryptosystem but
- Slow key generation
- Sub-exponential attacks known, thus long keys
- Not readily generalizable to other algebraic structures
- No "semantic security"

RSA Key Generation

- Generate two random large primes p, q
- Set n = pq
- Choose an e, s.t. $gcd(e, \varphi(n)) = 1$
- Compute $d := e^{-1} \mod \varphi(n)$
- (n, e) is the public key, (p, q, d) is the secret key.

RSA Encryption and Decryption

- To encrypt an $x \in \mathbb{Z}_n^*$, compute $y = x^e \mod n$
- To decrypt $y \in \mathbb{Z}_n^*$, compute $y^d \mod n$
- Clearly, $x^{ed \mod \varphi(n)} \equiv x \mod n$
 - * Since $\sharp \mathbb{Z}_n^* = \varphi(n)$ then $x^{\varphi(n)} = x$.

RSA Efficiency: Key generation and decryption

- Key generation:
 - * Generating primes p and q can be done efficiently by using randomized algorithms (Rabin-Williams, ...)
- Decryption:
 - \star In average k/2 multiplications modulo n when a k -bit modulus is used
 - * Can be sped up by using the Chinese Remainder Theorem

RSA efficiency: Encryption

- Usually, e = 3 or $e = 2^{16} + 1$ is used
 - * This speeds up exponentiation:

$$x^3 \equiv x^2 \cdot x \mod n$$

can be computed in two multiplications,

$$x^{2^{16}+1} = (((x^2)^2)^{\cdots 2})^2 \cdot x \mod n$$

in 17 multiplications. Thus, encryption is fast

See algorithms from the textbook

RSA: Basic Security

- If *n* can be factorized then one can recompute $\varphi(n) = (p-1)(q-1)$, and hence also $d = e^{-1} \mod \varphi(n)$
 - \star Factoring is easy \Rightarrow RSA is broken
- Best factorization algorithms: quadratic field sieve, generalized number field sieve, elliptic curve factorization method
- Modulus must be at least 1024-bit long to resist factoring
- It is *not* known whether breaking RSA is equivalent to factoring, it is believed that it is actually easier

RSA: Security Requirements

• RSA security (in the sense of message recovery) bases on the difficulty of computing roots (*the RSA problem*):

* Given (x, e) and modulus n, it is difficult to compute $x^{e^{-1}} \mod n$

- Semantic security:
 - * Attacker chooses m_1 and m_2 , and handles both of them to the black box. The black box picks a random $b \leftarrow \{1, 2\}$ and encrypts the corresponding m_b . Attacker sees the ciphertext $y = E_K(m_b)$. He must guess the value of b
- Example: you know that Napoleon is either encrypting "Attack" or "Wait". Clearly the cryptosystem must be semantically secure!

RSA and Semantic Security (1/2)

- RSA is not semantically secure, since it is deterministic:
 - You can encrypt both "Attack" and "Wait" yourself, and compare the outcomes with the received ciphertext
- Various methods exist for making RSA semantically secure
 - Many ad hoc methods have been broken (including PKCS as described in the textbook)

RSA and Semantic Security (2/2)

- RSA together with OAEP (Optimal Asymmetric Encryption Padding)
- Proposed and proved to be secure by Bellare and Rogaway, 1994
- A flaw in proof found by Shoup in 2001
- Proof corrected by others in 2001
- Result: OAEP is *provably* semantically secure, but the resulting scheme is quite complex
- (Even the proof that it is secure is complex!)

Alternative: Discrete logarithm problem

- Take any "good" group G
 - $\star \mathbb{Z}_p = \{0, 1, \dots, p-1\}$
 - * Elliptic curves
 - ★ Class groups, ...
- In such groups:
 - \star Exponentiation g^x is easy
 - $\star\,$ Given (g, g^x), it is (conjectured to be) difficult to find x
 - * This is the discrete logarithm problem: $(g, g^x) \rightarrow x$

Elliptic curve

Fix a field \mathbb{F} of characteristic $c \neq 2, 3$ (for those cases, formulas are slightly different). Elliptic curve is a nonsingular cubic curve,

$$C: y^2 = x^3 + ax + b$$

over \mathbb{F} .

Nonsingular: $x^3 + ax + b$ has no repeated factors

Elliptic curve points: all pairs $(x, y) \in \mathbb{F}^2$ that belong to *C* together with a special point \mathcal{O} at the infinity.

Elliptic curve: illustration

Here, $\mathbb{F} = \mathbb{R}!$

Elliptic curve group

- Take E(C) be the set of all EC points
- For two points P, Q on the curve, define P + Q as follows:
- ... Draw a line that crosses P and Q
- ... Find the third intersection point of this line and the curve
- Mirror this point w.r.t. *y*-axis

Elliptic curve group: illustration

Elliptic curve group: illustration

EC addition: formulas

Curve: $y^2 = x^3 + ax + b$, $\mathbb{F} = \mathbb{R}$. Define group $E_{\mathbb{F}}(C)$ as follows.

Let $P = (x_1, y_1)$, $Q = (x_2, y_2)$. If $Q = (x_1, -y_1)$, define $P + Q = \mathcal{O}$. Otherwise, define the slope of line connecting P and Q: $\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & P \neq Q, \\ \frac{3x_1^2 + a}{2y_1}, & P = Q. \end{cases}$

Then
$$P + Q = (x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_1 - x_3) - y_1).$$

Special cases when one of the two addends is \mathcal{O} : $P + \mathcal{O} = \mathcal{O} + P = P$.

EC group

Theorem Let \mathbb{F} be an *arbitrary* field of characteristic $c \neq 2, 3$. Let C: $y^2 = x^3 + ax + b$. Then $(E_{\mathbb{F}}(C), +)$ is a group w.r.t. addition defined in previous slide.

Unit element: \mathcal{O}

Inverse:
$$-\mathcal{O} = \mathcal{O}, -(x, y) = (x, -y)$$

Commutativity: easy

Associativity: harder to prove

Discrete logarithm problem in EC group

- Fix the field $\mathbb{F}=\mathrm{GF}(q),$ usually $q=2^p$ or q=p for a prime p, and $q\geq 2^{160}$
- *DL problem in EC group*: Given $g \in E_{\mathbb{F}}(C)$ of large order, and a random $x \in \mathbb{Z}_{\text{ord } q}$, compute x from (g, xg)

 \star Note: here we use the additive notation. (xg is exponentiation!)

• Believed to be hard: the best *known* algorithm to solve the discrete logarithm problem on a random curve takes $\approx \sqrt{q}$ steps

Algorithms for discrete logarithm problem

Generic algorithms (work for all groups, do not use the structure of group):

- Exhaustive search
- Shanks's baby-step giant-step
- Pollard's rho algorithm
- Pohlig-Hellman algorithm

Algorithms for discrete logarithm problem

Tailored algorithm (for specific groups):

- Index calculus for DL problem in \mathbb{Z}_p^*
- DL in $(\mathbb{Z}_p, +)$ can be solved trivially!
 - * Given $g, xg \in \mathbb{Z}_p$: $x = (xg)/g \mod p$
- No tailored algorithms are known for *randomly chosen* elliptic curves!

DLP: Exhaustive search

Given (g, h), $h = g^x$ for unknown x:

- Successively compute g^0 , g^1 , g^2 , ..., until h is obtained
- Requires 1 multiplication per step, hence x multiplications in total
- Asymptotically: $O(\operatorname{ord} g)$ multiplications, $\operatorname{ord} g$ is the order of g

For function f, g = O(f) if for some constant c, $g(x) \le cf(x)$ for all x

Recommendations for a good group

For the best algorithm for DL to take $\geq 2^k$ steps:

- To dwarf the rho algorithm, choose $n \ge 2k$
- To dwarf the Pohlig-Hellman algorithm, make sure that the greatest divisor p of ord g is big, $p \ge 2k$. Usually, g is chosen to generate a subgroup of prime order
- Choose a group without any tailored algorithms for DL

A randomly chosen EC group over GF(q), $q = 2^p$ or q = p, with $q \ge 2^{160}$ seems to be secure

Diffie-Hellman key exchange

Assume we have a fixed group G and an $g \in G$ with large order

Alternatively, y_A is Alice's public key, y_B is Bob's public key, and both can be fetched from a directory

Security of the DH key exchange

• Diffie-Hellman (DH) problem:

* Given (g, g^{x_A}, g^{x_B}) , compute $g^{x_A x_B}$.

- If DL problem is tractable, then so is the DH problem:
 - * Compute x_A from (g, g^{x_A}) and then compute $g^{x_A x_B}$ from (g, x_A, g^{x_B})
- It is *not* known, if the opposite reduction holds, but the best known algorithms for the DH problem need solving the DL problem

ElGamal cryptosystem

Basic Security of the ElGamal cryptosystem

- Message recovery from (mh^r, g^r) and public key $h = g^x$ can be done if DH is tractable
 - * Compute $h^r = g^{xr}$ from g^r and $h = g^x$.
- Is the opposite true?
 - ★ I.e., can one solve DH, if it is feasible to recover m from (mh^r, g^r) and $h = g^x$?
 - * Yes, since then one can also recover $h^r = g^{rx}$.
- Thus: one can use any group where the DH problem is hard

Semantic Security, Again

- Semantic security: given m_0 and m_1 , distinguish random encryptions of m_0 from m_1
 - * E.g., was the plaintext "yes" or "now"?
- Equivalent (informal) definition: given an encryption of unknown plaintext m, decide where P(m) is true for some predicate P
 - * E.g., decide whether plaintext contains the word "attack"

Semantic Security of ElGamal

- Theorem (Jakobsson, Tsiounis, Yung, 1998). ElGamal is semantically secure if the following *Decisional Diffie-Hellman* (DDH) problem is hard: Given (g, g^x, g^y, h) , decide whether $h = g^{xy}$ or $h = g^z$ for random z.
- ElGamal is not secure against the chosen ciphertext attack. Why? (Try to solve)
 - * (Hint: use the homomorphic property $E_K(m_1 + m_2) = E_K(m_1)E_K(m_2)$.)
 - ★ (Why does this property hold?)

PKC: brief overview

- ECC: ElGamal over EC. Short keys (≥ 160 bits), fast key generation. Semantically secure. Can be made secure against the CCA. Security bases on the DDH assumption in elliptic curves
- RSA. Long keys (≥ 1024 bits), slow key generation, fast encryption. Can be made semantically secure by using the OAEP. Security bases on the RSA assumption
- Other systems: *NTRU* (long keys, ≥ 1700 bits, 100...300 times faster than RSA, less known and studied), *XTR* (a variant of ElGamal in GF(p⁶), key ≥ 340 bits, approximately as fast as ECC, security bases on the DDH assumption in Z^{*}_p), ...

Next time

- Lecture given by Markku-Juhani Saarinen
- Public-key cryptanalysis
- Algorithms for factoring
- Algorithms for discrete logarithm
- Etc