Lecture 5: Public-Key Algorithms

Helger Lipmaa
Helsinki University of Technology
helger@tcs.hut.fi
Recap: what we have done

- First lecture: general overview
- Second lecture: secret-key cryptography
- Third lecture: Modes of operation
- Fourth lecture: Hash functions
 Lectures 2–4 are all about secret-key cryptography!

- Today: Public-key algorithms
Problems of symmetric model (1/3)

- Alice and Bob need to share a key
 - distributed over a private channel
 - say, when they meet in a pub

- Private channels are very expensive
 - especially in Finland
Problems of symmetric model (2/3)

Huge number of keys when scaling:

- \(n \) parties need to communicate secretly with everybody else
- Every pair needs a secret key, there are \(\binom{n}{2} = \frac{n^2-n}{2} \) pairs
- Thus, \(\frac{n^2-n}{2} \) keys must be pre-distributed!
- Every participant needs to store \(n \) different keys
- Say, \(n = 6 \cdot 10^9 \ldots \)
Problems of symmetric model (2/3)

Non-repudiation:

- You can authenticate yourself and your messages to your friends by using MACs.
- However, MACs use shared key.
- Therefore, you cannot prove to third parties that messages were really sent by your friend and not by yourself!
Public key cryptography: mysterious helper

- All mentioned problems can be solved by using PKC

- Basic idea: everybody has a pair \((pk, sk)\) of public and secret keys

- If you want to send to me a message, you

 * a) fetch my \(pk\) from a directory, b) encrypt a message by \(pk\) and c) send the result to me

- I will decrypt the ciphertext by using my secret key
PKC: model

\[E_{pk} \quad C = E_K(M) \quad E_{sk}^{-1} \quad M = E_{sk}^{-1}(E_{pk}(M)) \]

Alice

Eve

Bob’s public key

Bob

T-79.159 Cryptography and Data Security, 25.02.2004 Lecture 5: Public-Key Algorithms, Helger Lipmaa
PKC: model

Alice obtains public key from an \textit{authenticated} channel, no privacy during this is necessary!

T-79.159 Cryptography and Data Security, 25.02.2004 Lecture 5: Public-Key Algorithms, Helger Lipmaa
Public-Key Cryptography: Assumptions

- PKC bases on clear mathematics
 - Existence of one-way functions, and related primitives
- “Crazy” solutions (AES-like or DES-like) are not accepted
- **IMPORTANT:** PKC bases on the assumption that there is one OWF
 Caveat: Real assumptions are slightly more complicated
- If this OWF gets “broken”, it can be substituted with another one — assuming that OWFs exist
Etude: Elementary mathematics (1/2)

• For any integer n, $\mathbb{Z}_n = \{0, \ldots, n - 1\}$

• \mathbb{Z}_n is an additive group: $a + b = c \mod n$. E.g., $7 + 12 = 19 \equiv 6 \mod 13$, thus $7 + 12 = 6$ in \mathbb{Z}_{13}

• Analogously, modular multiplication: $7 \cdot 12 = 84 \equiv 6 \mod 13$

• \mathbb{Z}_n is not a multiplicative group:

 ★ not all elements of \mathbb{Z}_n have inverses

(Known from the discrete mathematics course)
Etude: Elementary mathematics (2/2)

- y is inverse of x modulo n iff $xy \equiv 1 \pmod{n}$

- Elementary: x has an inverse iff $\gcd(x, n) = 1$

- E.g., $4^{-1} \equiv 10 \pmod{13}$ since $4 \cdot 10 = 40 \equiv 1 \pmod{13}$, but 4 does not have an inverse modulo 12, since $\gcd(4, 12) = 4 \neq 1$

- For any integer n,

\[
\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n : x \text{ has an inverse modulo } n\} = \{x \in \mathbb{Z}_n : \gcd(x, n) = 1\}
\]

- Euler’s totient function $\varphi(n) := \#\mathbb{Z}_n^* = \#\{x \in \mathbb{Z}_n : \gcd(x, n) = 1\}$
RSA Cryptosystem

- The first PKC (Rivest, Adleman, Shamir, 1977)
- Still the most used public-key cryptosystem but
 - Slow key generation
 - Sub-exponential attacks known, thus long keys
 - Not readily generalizable to other algebraic structures
 - No “semantic security”
RSA Key Generation

- Generate two random large primes p, q

- Set $n = pq$

- Choose an e, s.t. $\gcd(e, \varphi(n)) = 1$

- Compute $d := e^{-1} \mod \varphi(n)$

- (n, e) is the public key, (p, q, d) is the secret key.
RSA Encryption and Decryption

- To encrypt an $x \in \mathbb{Z}_n^*$, compute $y = x^e \mod n$

- To decrypt $y \in \mathbb{Z}_n^*$, compute $y^d \mod n$

- Clearly, $x^{ed} \mod \phi(n) \equiv x \mod n$

 * Since $\#\mathbb{Z}_n^* = \phi(n)$ then $x^{\phi(n)} = x$.

T-79.159 Cryptography and Data Security, 25.02.2004 Lecture 5: Public-Key Algorithms, Helger Lipmaa
RSA Efficiency: Key generation and decryption

- Key generation:
 - Generating primes \(p \) and \(q \) can be done efficiently by using randomized algorithms (Rabin-Williams, ...)

- Decryption:
 - In average \(k/2 \) multiplications modulo \(n \) when a \(k \)-bit modulus is used
 - Can be sped up by using the Chinese Remainder Theorem
RSA efficiency: Encryption

- Usually, $e = 3$ or $e = 2^{16} + 1$ is used

 * This speeds up exponentiation:

 $$x^3 \equiv x^2 \cdot x \mod n$$

 can be computed in two multiplications,

 $$x^{2^{16} + 1} = (((x^2)^2)\ldots)^2 \cdot x \mod n$$

 in 17 multiplications. Thus, encryption is fast

See algorithms from the textbook
RSA: Basic Security

- If \(n \) can be factorized then one can recompute \(\varphi(n) = (p-1)(q-1) \), and hence also \(d = e^{-1} \mod \varphi(n) \)

 * Factoring is easy \(\Rightarrow \) RSA is broken

- Best factorization algorithms: quadratic field sieve, generalized number field sieve, elliptic curve factorization method

- Modulus must be at least 1024-bit long to resist factoring

- It is \textit{not} known whether breaking RSA is equivalent to factoring, it is believed that it is actually easier
RSA: Security Requirements

- RSA security (in the sense of message recovery) bases on the difficulty of computing roots (the RSA problem):
 - Given \((x, e)\) and modulus \(n\), it is difficult to compute \(x^{e-1} \mod n\)

- Semantic security:
 - Attacker chooses \(m_1\) and \(m_2\), and handles both of them to the black box. The black box picks a random \(b \leftarrow \{1, 2\}\) and encrypts the corresponding \(m_b\). Attacker sees the ciphertext \(y = E_K(m_b)\). He must guess the value of \(b\)

- Example: you know that Napoleon is either encrypting “Attack” or “Wait”. Clearly the cryptosystem must be semantically secure!

T-79.159 Cryptography and Data Security, 25.02.2004 Lecture 5: Public-Key Algorithms, Helger Lipmaa
RSA and Semantic Security (1/2)

• RSA is not semantically secure, since it is deterministic:
 ✴ You can encrypt both “Attack” and “Wait” yourself, and compare the outcomes with the received ciphertext

• Various methods exist for making RSA semantically secure
 ✴ Many ad hoc methods have been broken (including PKCS as described in the textbook)
RSA and Semantic Security (2/2)

• RSA together with OAEP (Optimal Asymmetric Encryption Padding)

• Proposed and proved to be secure by Bellare and Rogaway, 1994

• A flaw in proof found by Shoup in 2001

• Proof corrected by others in 2001

• Result: OAEP is provably semantically secure, but the resulting scheme is quite complex

• (Even the proof that it is secure is complex!)
Alternative: Discrete logarithm problem

- Take *any* “good” group \(G \)
 - \(\mathbb{Z}_p = \{0, 1, \ldots, p - 1\} \)
 - Elliptic curves
 - Class groups, . . .

- In such groups:
 - Exponentiation \(g^x \) is easy
 - Given \((g, g^x)\), it is (conjectured to be) difficult to find \(x \)
 - This is the *discrete logarithm problem*: \((g, g^x) \rightarrow x\)
Elliptic curve

Fix a field \mathbb{F} of characteristic $c \neq 2, 3$ (for those cases, formulas are slightly different). Elliptic curve is a nonsingular cubic curve,

$$C : y^2 = x^3 + ax + b$$

over \mathbb{F}.

Nonsingular: $x^3 + ax + b$ has no repeated factors

Elliptic curve points: all pairs $(x, y) \in \mathbb{F}^2$ that belong to C together with a special point \mathcal{O} at the infinity.
Elliptic curve: illustration

Here, $F = \mathbb{R}$!
Elliptic curve group

- Take $E(C)$ be the set of all EC points

- For two points P, Q on the curve, define $P + Q$ as follows:
 - ...Draw a line that crosses P and Q
 - ...Find the third intersection point of this line and the curve
 - Mirror this point w.r.t. y-axis
Elliptic curve group: illustration
Elliptic curve group: illustration
EC addition: formulas

Curve: $y^2 = x^3 + ax + b$, $F = \mathbb{R}$. Define group $E_F(C)$ as follows.

Let $P = (x_1, y_1)$, $Q = (x_2, y_2)$. If $Q = (x_1, -y_1)$, define $P + Q = O$. Otherwise, define the slope of line connecting P and Q: $\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & P \neq Q, \\ \frac{3x_1^2 + a}{2y_1}, & P = Q. \end{cases}$

Then $P + Q = (x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_1 - x_3) - y_1)$.

Special cases when one of the two addends is O: $P + O = O + P = P$.

T-79.159 Cryptography and Data Security, 25.02.2004 Lecture 5: Public-Key Algorithms, Helger Lipmaa
EC group

Theorem Let \(F \) be an *arbitrary* field of characteristic \(c \neq 2, 3 \). Let \(C : y^2 = x^3 + ax + b \). Then \((E_F(C), +) \) is a group w.r.t. addition defined in previous slide.

Unit element: \(\mathcal{O} \)

Inverse: \(-\mathcal{O} = \mathcal{O}, -(x, y) = (x, -y) \)

Commutativity: easy

Associativity: harder to prove
Discrete logarithm problem in EC group

- Fix the field $\mathbb{F} = \text{GF}(q)$, usually $q = 2^p$ or $q = p$ for a prime p, and $q \geq 2^{160}$

- **DL problem in EC group**: Given $g \in E_{\mathbb{F}}(C)$ of large order, and a random $x \in \mathbb{Z}_{\text{Ord} g}$, compute x from (g, xg)

 * Note: here we use the additive notation. (xg is exponentiation!)

- Believed to be hard: the best known algorithm to solve the discrete logarithm problem on a random curve takes $\approx \sqrt{q}$ steps
Algorithms for discrete logarithm problem

Generic algorithms (work for all groups, do not use the structure of group):

- Exhaustive search
- Shanks’s baby-step giant-step
- Pollard’s rho algorithm
- Pohlig-Hellman algorithm
Algorithms for discrete logarithm problem

Tailored algorithm (for specific groups):

- Index calculus for DL problem in \(\mathbb{Z}_p^* \)

- DL in \((\mathbb{Z}_p, +)\) can be solved trivially!

 * Given \(g, xg \in \mathbb{Z}_p \): \(x = (xg)/g \mod p \)

- No tailored algorithms are known for \textit{randomly chosen} elliptic curves!
DLP: Exhaustive search

Given \((g, h)\), \(h = g^x\) for unknown \(x\):

- Successively compute \(g^0, g^1, g^2, \ldots\), until \(h\) is obtained

- Requires 1 multiplication per step, hence \(x\) multiplications in total

- Asymptotically: \(O(\text{ord } g)\) multiplications, \(\text{ord } g\) is the order of \(g\)

For function \(f\), \(g = O(f)\) if for some constant \(c\), \(g(x) \leq cf(x)\) for all \(x\)
Recommendations for a good group

For the best algorithm for DL to take $\geq 2^k$ steps:

- To dwarf the rho algorithm, choose $n \geq 2^k$:

- To dwarf the Pohlig-Hellman algorithm, make sure that the greatest divisor p of $\text{ord} g$ is big, $p \geq 2^k$. Usually, g is chosen to generate a subgroup of prime order

- Choose a group without any tailored algorithms for DL

A randomly chosen EC group over $\text{GF}(q)$, $q = 2^p$ or $q = p$, with $q \geq 2^{160}$ seems to be secure
Diffie-Hellman key exchange

Assume we have a fixed group G and an $g \in G$ with large order

Alice Bob

Private input: x_A (secret key) Private input: x_B (secret key)

Compute $y_A := g^{x_A}$ Compute $y_B := g^{x_B}$

Output: $y_B^{x_A} = g^{x_A x_B}$ Output: $y_A^{x_B} = g^{x_A x_B}$

Alternatively, y_A is Alice’s public key, y_B is Bob’s public key, and both can be fetched from a directory.
Security of the DH key exchange

- **Diffie-Hellman (DH) problem:**
 - Given \((g, g^xA, g^xB)\), compute \(g^{xAxB}\).

- If DL problem is tractable, then so is the DH problem:
 - Compute \(x_A\) from \((g, g^{xA})\) and then compute \(g^{xAxB}\) from \((g, x_A, g^{xB})\).

- It is *not* known, if the opposite reduction holds, but the best known algorithms for the DH problem need solving the DL problem.
ElGamal cryptosystem

\[r \leftarrow \mathbb{Z}_q \]
\[(u, v) \leftarrow (Mh^r, g^r) \]
Output \((u, v)\)

\[C = E_K(M) \]

\[M' := u/v^{x_B} \]
Output \(M'\)

\[K := (G, g, h) \]
Bob’s public key

Public parameters \((G, g)\)
Secret key \(x_B \leftarrow \mathbb{Z}_q\)
Public key \(h := g^{x_B}\)
Basic Security of the ElGamal cryptosystem

- Message recovery from \((mh^r, g^r)\) and public key \(h = g^x\) can be done if DH is tractable

 * Compute \(h^r = g^{xr}\) from \(g^r\) and \(h = g^x\).

- Is the opposite true?

 * I.e., can one solve DH, if it is feasible to recover \(m\) from \((mh^r, g^r)\) and \(h = g^x\)?

 * Yes, since then one can also recover \(h^r = g^{rx}\).

- Thus: one can use any group where the DH problem is hard
Semantic Security, Again

- **Semantic security**: given m_0 and m_1, distinguish random encryptions of m_0 from m_1

 ★ E.g., was the plaintext “yes” or “now”?

- Equivalent (informal) definition: given an encryption of unknown plaintext m, decide where $P(m)$ is true for some predicate P

 ★ E.g., decide whether plaintext contains the word “attack”
Semantic Security of ElGamal

- **Theorem (Jakobsson, Tsiounis, Yung, 1998).** ElGamal is semantically secure if the following Decisional Diffie-Hellman (DDH) problem is hard: Given \((g, g^x, g^y, h)\), decide whether \(h = g^{xy}\) or \(h = g^z\) for random \(z\).

- ElGamal is not secure against the chosen ciphertext attack. Why? (Try to solve)

 \(\star\) (Hint: use the **homomorphic** property \(E_K(m_1 + m_2) = E_K(m_1)E_K(m_2)\).)

 \(\star\) (Why does this property hold?)
PKC: brief overview

- **ECC**: ElGamal over EC. Short keys (≥ 160 bits), fast key generation. Semantically secure. Can be made secure against the CCA. Security bases on the DDH assumption in elliptic curves

- **RSA**: Long keys (≥ 1024 bits), slow key generation, fast encryption. Can be made semantically secure by using the OAEP. Security bases on the RSA assumption

- Other systems: **NTRU** (long keys, ≥ 1700 bits, $100 \ldots 300$ times faster than RSA, less known and studied), **XTR** (a variant of ElGamal in $\text{GF}(p^6)$, key ≥ 340 bits, approximately as fast as ECC, security bases on the DDH assumption in \mathbb{Z}_p^*), ...
Next time

- Lecture given by Markku-Juhani Saarinen
- Public-key cryptanalysis
- Algorithms for factoring
- Algorithms for discrete logarithm
- Etc