
T-79.159 Cryptography and Data Security

Lecture 4: Hashes and Message Digests

Markku-Juhani O. Saarinen
Helsinki University of Technology

mjos@tcs.hut.fi

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

1

Cryptographic hash functions

• Maps a message M (a bit string of arbitrary length) as a “message
digest” X = H(M) of constant length, e.g. 128, 160, or 256 bits.

• Well-known examples: MD5, SHA-1, RIPEMD-160, SHA-256.

• Security requirement 1:
One-wayness. Given a message X, it is should be “hard” to find a
message M satisfying X = H(M).

• Security requirement 2:
Collision resistance. It should be “hard” to find two messages
M1 6= M2 such that H(M1) = H(M2).

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

2

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

3

UNIX Password authentication

1. User enters a password (key):
Login: falken

Password: ******

2. System looks up user in /etc/passwd file and finds the correspond-
ing hashed key value and other relevant data:
falken: cV/h5TT95.pzQ :1085:1085:Prof. Falken

3. First 2 chars, cV, is the salt. Now the system compares the output of
the crypt system call to the encrypted string:
char *crypt(const char *key, const char *salt);

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

4

UNIX Password authentication (2)

• No need to store the key itself, just H(salt || key)

• The password file /etc/passwd can be world-readable! (And often
is, although this makes systems more vulnerable to dictionary attacks.)

• Salt slows down dictionary attacks. To check whether some user (from
a large group) has a given password, the word has to be hashed with
each one of the salts.

• UNIX crypt(3) is one-way, but not really collision resistant. Based
on DES. Developed by Robert Morris (Sr.) ca. 1975 – still in use today.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

5

SHA-1 and MD5 Fingerprints

• How do you know that your system files have not been tampered with
(by viruses or trojans installed by intruders) ?

• One way is to maintain a database of file fingerprints and compare
them to known good values (e.g. www.knowngoods.org).

• Length checking is not sufficient; simple “checksums” won’t be secure
enough. One-wayness clearly a requirement.

• Example: Computing a 128-bit MD5 digest of Linux kernel:
$ md5sum /boot/vmlinuz
95fb55766efa90bfe10c25cd2e9daaa4 /boot/vmlinuz

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

6

Collision resistance

• What if the software distributor tries to cheat ? Could he create a
“good” file and a “bad” file (say, with a back-door), such that they have
the same digest ?

• This is different from one-wayness, since the distributor can create
both files (good and bad ones) simultaneously.

• If a n-bit hash is one-way, it takes 2n effort to find a message M sat-
isfying H(M) = X, given just X.

• If a n-bit hash is collision-resistant, it takes no more than
√

2n = 2n/2

to find two messages M1 6= M2 such that H(M1) = H(M2). Why ?

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

7

Birthday paradox

Question:

“How many persons needs to be in a room before we can expect two of
them to have the same birthday?”

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

8

Birthday paradox

Question:

“How many persons needs to be in a room before we can expect two of
them to have the same birthday?”

Answer:

23.

Why ?

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

9

Birthday paradox (2)

n persons make up exactly n(n−1)
2 pairs.

Each pair has probability 364
365 of not having the same birthday. Since these

events are very close to being unrelated, the total probability of no-one

having the same birthday is roughly (364
365)

n(n−1)
2 .

Substituting n = 23 we get (364
365)

253 ≈ 0.499523.

(So this is not a “paradox” at all.)

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

10

Birthday paradox (3)
More generally: We wish to find n (“number of persons”) as a function of
m (“number of days in year”), so that probability of a match is 1

2:

(1− 1
m)

n(n−1)
2 = 1

2, taking logs:

n(n−1)
2 ln(1− 1

m) = − ln 2.

When x > 2, there is a bound −1
x −

1
x2 < ln(1− 1

x) < −1
x.

We get an approximation 0.7213 ∗ (n2 − n) ≈ m.

Asymptotically n = O(
√

m).

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

11

How to find collisions

The obvious (but very memory-intensive and hence inefficient) algorithm:

• Initialize a table that can hold
√

n pairs of x values. The table is in-
dexed by first 1

2 lg
√

n bits of H(x).

• For x = 1,2,3, · · · : Compute H(x) and check if the table at position
indexed by H(x) already has a entry. If an entry exists (say y), verify
collision H(x) = H(y) and quit. Otherwise just store x in the table
position.

This will take about O(
√

n) time and O(
√

n) memory, e.g. if n = 2128,
roughly 264 iterations and memory slots. The memory factor is the pre-
ventive one even if we manage to run the 264 steps.
T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

12

Floyd’s cycle finding algorithm (1)

Consider a sequence where we start from some x0 and iteratively compute
a sequence x1, x2, · · · as the hash of the previous value:

xi+1 = H(xi)

We have seen that after about
√

n steps, a collision will probably occur:
there will be a pair xα and xβ so that xα = xβ but xα−1 6= xβ−1.

α is called the tail of the cycle.

δ = β − α is the cycle length.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

13

Floyd’s cycle finding algorithm (2)

Here a collision occurs at x3 = x14.
Hence “tail” α = 3, β = 14 and cycle length β − α = δ = 11.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

14

Floyd’s cycle finding algorithm (2)

• Clearly xi = xi+δ when i ≥ α.

• Hence xi = x2i when 2i = i + δ; i = δ (the cycle length).

Thus we can find the cycle length by starting with (x0, x0) and compute
(x1, x2), (x2, x4), (x3, x6), · · · , (xi, x2i). (i.e. stop when xi = x2i).

Three hash function invocations needed in each step. Then i will have the
cycle length δ.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

15

Finding the collision

From previous step, we have xδ. Now we compute the sequence

(x0, xδ), (x1, xδ+1), (x2, xδ+2), · · · , (xα, xδ+α)

.. i.e. stop when H(xi) = H(xδ+i). Two hash function invocations are
needed in each step. At the end i = α−1, and hence we have the collision
since xi 6= xδ+i.

This simple algorithm requires 3δ + 2α invocations of the hash function,
and therefore it is asymptotically optimal. However, the memory require-
ment is very small!

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

16

Collision finding, pseudocode:

1. Initialize: a← 0, b← 0.

2. Do: a← H(a), b← H(H(b)) Until a = b.

3. Set: b← 0.

4. Do: Store (x, y)← (a, b). a← H(a), b← H(b) until a = b.

When the algorithm terminates: H(x) = H(y), but x 6= y, a collision !

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

17

Rules of thumb

• As implicated by the birthday paradox, there are algorithms that find
a collision (birthday match) with O(

√
m) effort. Neglible memory is

required by the algorithms.

• Hence to have collision resistance with n-bit security, the hash should
be at least 2n bits long; e.g. 128-bit hashes give 64-bit security.

• If only one-wayness is required, then n bits is sufficient for n-bit secu-
rity.

• Beware that some hash functions (like MD4) have been broken; they
do not have the security level implicated by hash size.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

18

How do hash functions actually work?

• Additional design requirement besides one-wayness and collision re-
sistance: it should be possible to hash long messages without storing
the whole thing in memory (e.g. signing a backup tape).

• Long message is cut into pieces Mi of equal size and a state variable
Xi is maintained.

• The last piece Mn is padded with the length of message and the final
value of the state variable Xn is the hash.

• Many other approaches have been proposed, but almost all practical
hash functions work like this.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

19

Davies-Meyer (1985)

• Use a block cipher E(K, P). Start with some initial value X0 and
update as Xi+1 = E(Mi, Xi)⊕Xi. Final value Xn is the hash.

• Provably secure (if the block cipher is secure).

• Since each piece Mi is used to key the block cipher, hashing speed
is directly proportional to key size (rather than block size). Resulting
hash size is equal to block size.

• Most block ciphers are optimized for fast encryption rather than fast
key initialization; hence dedicated hash functions. E(Mi, Xi) ⊕Xi is
called “compression function” in the context of these dedicated hash
functions.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

20

Message Digest 5 (MD5)

• Very widely used hash function (message digest). Fingerprints, PGP
2.x, PKI x509, etc.

• Designed by Ron Rivest (MIT), 1992. Specified in RFC 1321. MD5
means that this is Rivest’s fifth message digest design.

• Produces a 128-bit hash; has no more than 64-bit security. Processes
messages in 512-bit blocks.

• Hans Dobbertin (BSI) found a flaw in the compression function of MD5
in 1996; hence its security proofs do not hold. However, collisions have
not been computed yet. Do not use in new products.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

21

Secure Hash Algorithm - 1 (SHA-1)

• U.S. / NIST federal standard 180-1/2. Currently the most popular cryp-
tographic hash algorithm.

• Produces a 160-bit hash; 80-bit security. Processes messages in 512-
bit blocks. Similar in design to MD4 and MD5.

• Designed by unknown persons at NSA in 1993 (original design is
known as SHA-0). Slightly modified for (then) unspecified reasons in
1995. New version known as SHA-1.

• Chabaud and Joux (CASSI/SCY/EC) published in 1998 an attack
against SHA-0 (collisions with 261 effort rather than 280) that showed
that SHA-1 was indeed more secure than SHA-0.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

22

SHA - 1 (2)

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

23

Other dedicated hash algorithms

• RIPE-MD 160 is a robust European hash function. 160-bit hash.

• In 2000, NSA proposed new hash functions that produce 256- and 512
bit hashes. Known as SHA-256 and SHA-512.

• Some speed measurements on a 1.4 GHz AMD Athlon Linux:

MD2 5 010 kB/s MD4 274 556 kB/s
MD5 238 392 kB/s SHA-1 127 283 kB/s

RIPE MD-160 84 896 kB/s

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

24

Message Authentication Codes (MACs)

• Protects against unauthorized or accidental message manipulation.

• Uses a secret key K to make sure that a message is actually from
its assumed sender. MAC is appended to the message. Recipient
computes the MAC again from the message and K and verifies it.

• It seems natural to use dedicated hash functions for computation of
MACs (fast!), especially if encryption isn’t needed.

• Many MACs have been proposed, the most common being HMAC
(“hash MAC”), Krawczyk et al (IBM), 1997.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

25

A Stupid MAC

Question:
“Hey! Why not just append the message after the key, hash the whole thing
and use that as a MAC ?” (i.e. MAC = H(K |M))

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

26

A Stupid MAC

Question:
“Hey! Why not just append the message after the key, hash the whole thing
and use that as a MAC ?” (i.e. A = H(K |M))

Answer:
Eve sees the message M and the MAC A. Because of the way the Davies-
Meyer mode works, she has the state of the hash function Xn = A at
the end of the current message M . Now she can just add anything after
that and compute more iterations Xn+1, Xn+2, · · · with the compression
function, and finally do a new padding.

MAC must detect changes in the message length as well!

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

27

HMAC

• Defined in RFC 2104. Can be used used with many dedicated hash
functions: HMAC-MD5, HMAC-SHA1, HMAC-RIPEMD.

• The output can be truncated by simply taking the first n bits of output
(e.g. HMAC-SHA1-96 is used in the IPSEC protocol).

• Uses two constants, ipad (64 0x36 bytes) and opad (64 0x5c bytes).

• Defined as H(K ⊕ opad | H(K ⊕ ipad |M))

• Only slightly slower than computation of H(M) for long messages.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

28

Key generators

• Where do all of the cryptographic keys come from ?

• Example: AES Needs a 128-bit (16 byte) key, but 16 letters of En-
glish contains less than 32 bits of entropy: Directly using a human-
understandable key is not a good idea.

• Solution: hash the key first. This way the input key can be of any
length! Such long keys are often called passphrases.

• If protocols need random, unpredictable values (nonces), use proper
random number generators. These are often based on hash functions.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

29

Pseudorandom Number Generators (PRNGs)

Cautionary tale of the Netscape PRNG in 1995.

• Netscape Navigator 1.1 had the first version of the now-popular SSL
protocol. Keys for encryption were generated using a PRNG.

• The PRNG was initialized from time() on program startup and the
consequent outputs were deterministically based on this seed.

• Guess the 32-bit time value (which is not a secret; everyone has a
clock) and you can predict all future outputs of the PRNG!

• Since the eavesdropper knows the outputs of the PRNG, she knows
the keys and she can eavesdrop, regardless of encryption strength.

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

30

PRNGs (2)

• Most OS’s nowadays have built-in cryptographic random number gen-
erators for key generation. On UNIX systems:

˜> hexdump /dev/random
0000000 d938 cb3d e578 7525 292d 68e3 0bd6 16c4
0000010 9cbb d6dc c662 9e5b c326 501b [...]

• The randomness is contained in a random state (or pool) and it is con-
stantly stirred by events that the operating system gathers: mouse and
keyboard inputs, interrupt timings, network events etc. Cryptographic
hash functions are used to mix the pool (SHA-1 on Linux).

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

31

A Simple PRNG Based on a Hash Function

Stir new input data to state:
State = H(State | counter++ | new input data)

Extract randomness:
Output = H(State | counter++)

.. of course it is good to remember ..

“Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.” – John von Neumann (1951)

.. and to use RNGs if available!

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

32

Digital Signatures

When signing a message using a public key digital signature algorithm,
it is not necessary to sign the message itself. It is sufficient to sign a
cryptographic hash (message digest) of the message.

Signing:
Signature = Sign(SHA-1(Message), Private Key)

Verifying:
Verify(SHA-1(Message), Signature, Public Key) = OK/FAIL

Note; signature algorithm doesn’t even need the message; only its hash is
sufficient. More on this in the next lecture..

T-79.159 Cryptography and Data Security, 11.02.2004 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

33

