Overview of the Lecture

• Quick & Dirty Intro to Electronic Cash

• Motivation

• Simple protocols, their weaknesses

• More advanced protocols

• Briefly on oblivious transfer

Short lecture! (Enjoy the spring)
Conventional Payments

- Cash
 - Cheap to operate
 - Anonymous
 - Reusable

- Cheque

- ...
Electronic Payments: Current Situation

- Payment with Credit Cards
 - Credit card frauds — add $x\%+y$ cents to the price
 - Also high costs of transaction
 - Thus: High cost, can’t allow small payments
 - Security — accidentally published credit card numbers

- Open an account at the seller

- Both are non-anonymous
Example: Account-Based System

- During opening an account, the bank of payer issues a corresponding signing key to the payer, together with certificate (his own signature on the key, account number, ...)

- If the payer wants to buy something, he just signs a message “Pay X euros to Y”, and gives it to the seller

- The seller forwards this signature to her bank, who will obtain X euros from payer’s bank and transfers it to the seller’s account

- Standard: SET (includes additional features)
Faults of Account-Based System

- One big fault: non-anonymity
 - Your bank will basically know what did you buy when and where...
 - Similar to credits cards etc
 - Do you want your bank to know what exactly you buy?

- Another fault: a coin can be reused
Desiderata from Electronic Cash

- Emulate real cash, possibly even improving upon it
- Anonymity: the seller does not know your identity, your bank does not know what you buy
- Transferability: same coin can be reused
- Cheap processing (computationally, communicationally)
 - Since cash is “prepaid”, it usually involves small units of money. Processing such units should be easy!
 - Clearly, an anonymous system is more costly than a nonanonymous one
More About Anonymity

- **Untraceability**: Given the coin and a view of a protocol between the payer and the seller, one should not be able to guess payer’s identity

- **Unlinkability**: Given several coins of the same user, and corresponding views together, one should not be able to determine whether or not the coins were paid by the same person

 - Prepaid phone cards provide untraceability but not unlinkability

- **Privacy can be computational, statistical or information-theoretical**
An Anonymous E-Cash Protocol

- Basic idea: use blind signatures

- Conventionally:
 - User writes “100 euros” on a paper, and puts the paper in envelope
 - The bank signs the envelope (by using a special pen) so that the signature will also be seen on the paper
 - The user takes paper out from the envelope and uses it later for payments
 - The bank does not know what was written on the paper!
Recall: RSA Signatures

- RSA modulus: \(n = pq \), \(p \) and \(q \) are two secret primes

- Secret exponent \(d \), public exponent \(e \), such that \(de \equiv 1 \mod \varphi(n) \)

- \(H \) is a hash function

- RSA signing of message \(m \): \(s \leftarrow H(m)^d \mod n \)

- RSA verification: \(s^e \equiv H(m)^d \mod n \)

- Correct, since \(s^e \equiv H(m)^{de} \equiv H(m) \)
Blind RSA Signatures

- User generates a random \(r \leftarrow_R \mathbb{Z}_n \) and sends \(m' \leftarrow r^e H(m) \) to Bank.

- Bank signs \(m' \): \(s' \leftarrow (m')^d \mod n \)

- User verifies that \(s' \) is a signature on \(m' \).

- After that, she computes \(s \leftarrow s'/r \mod n \)

- \[s \equiv \frac{s'}{r} \equiv \frac{(m')^d}{r} \equiv \frac{r^e H(m)^d}{r} \equiv \frac{r^{ed} H(m)^d}{r} \equiv H(m)^d \mod n \]

- Thus \(s \) is a signature on \(m \), and bank does not know \(m \)!
An Anonymous E-Cash Protocol, Cont

- Protocol:
 - Coin withdrawal: User generates a new random coin \(m \), and gets his bank’s blind signature \(s \) on it, \(s = H(m)^d \mod n \)
 - When buying something, user shows the coin to the seller, who verifies the signature
 - Seller’s bank later shows the coin to the user’s bank, who transfers 100 euros to her
An Anonymous E-Cash Protocol, Problems

- We want to use coins of different size. However, due to blind signing, the seller does not know what is the amount that m signifies.

- Solution: bank uses a different signing key for every amount.

- Second solution: cut-and-choose
 - The user generates 1000 coins of form $1000||r_i$, where r_i is random, and sends them in a blinded form to the bank.
 - The bank asks the user to unblind 999 randomly chosen coins.
 - If all of them are correct, the bank blindly signs the 1000th coin.
An Anonymous E-Cash Protocol, Problems

- This protocol does not protect against double spending

- On-line solution:
 - The bank maintains a database of used coins
 - The seller contacts the bank after the payment, and asks the bank whether this coin has been used before

- Problem: bank’s database grows large, impractical

- Problem: can’t guarantee online connection (at least sometimes); contacting bank takes resources, and slows down the sales
Off-line E-Cash

• Basic idea:
 ★ Instead of preventing double-spending, enables to detect it

• Anonymity: if user does not double-spend, his identity is protected

• Double-spending: if user pays twice with the same coin, his identity can be computed

• High-value payments are (in ideal) done on-line, for low value payments, traceability after the fact might discourage double-spending
Chaum-Fiat-Naor Protocol. Coin Withdrawal

- User generates $2k$ messages of the form $H(m_i) || H(m_i \oplus Id)$, where Id is his unique identifier, and m_i is a random coin. He sends all of them blinded to the bank.

- Bank asks the user to unblind random k coins, and receives the corresponding values m_i and r_i (r_i is the blinding factor)

- If all k coins are correct, bank knows that “most” of the remaining coins are correct, and signs them

- The user obtains thus blind signatures on k messages of the form $H(m_i) || H(m_i \oplus Id)$
Chaum-Fiat-Naor Protocol. Payment

- The seller sends k bits (c_1, \ldots, c_k) (a challenge) to the payer.

- For $i \in [1, k]$:
 - If $c_1 = 0$, the payer sends $m_i || H(m_i \oplus Id)$ to the seller. If $c_1 = 1$, the payer sends $H(m_i) || m_i \oplus Id$ to the seller.
 - The seller can compute in both cases the value $H(m_i) || H(m_i \oplus Id)$, and verify the correctness of bank’s signature on it.

- The seller accepts the payment if all verifications succeed.
The Chaum-Fiat-Naor Protocol. Deposit

- The seller sends the challenge \((c_1, \ldots, c_k)\) and the \(k\) received messages to the payer’s bank.

- Now, if the same coin has been double-spent, with high probability the corresponding challenges differ at least in one coefficient, say \(i\)th.

- Since \(c_i \neq c'_i\), the bank has both \(m_i || H(m_i \oplus Id)\) and \(H(m_i) || m_i \oplus Id\). From \(m_i\) and \(m_i \oplus Id\) he can compute the \(Id\) of the double-spender.
Micropayments

- In above payment schemes, the seller must verify at least one signature per payment

- This is often too much (imagine a pay TV, when you have to pay 0.01 cents per second)

- Idea: compute a secret A_0, and issue $A_n = H^n(A_0) = H^{n-1}(H(A_0))$ as a coin

- After a second, release $A_{n-1} = H^{n-1}(A_0)$, then $A_{n-2} = H^{n-2}(A_0)$, etc
Micropayments

- Release of A_{n-i} means the payment of i coins
- The seller only has to remember the last A_{n-i}
- No anonymity
Final Remarks

- E-cash with untraceability is clearly less efficient than one without it

- Efficient on-line e-cash systems (that prevent double-spending) exist

- Similar off-line systems can be built by using secure hardware

- Otherwise, in off-line systems one can only detect double-spending
Advanced Properties

- Revocability
 - Blackmailing, money laundering — it is desirable to be able to revoke the anonymity if some number of authorities collaborate

- Divisibility
 - You receive a 100 euro coin from the bank, but want to use it for buying a coffee, disposable camera, some books and beer from different sellers
 - Need protection against double-spending and unlinkability!

- Both objectives can be achieved
Oblivious Transfer

- Assume Bob has a database of N elements

- Alice pays to Bob $1 to access one item thus Alice should not get to know more

- Bob should not get to know which item Alice retrieved

- Many applications: e.g., medical databases
AIR/HOT Protocols

- Assume we have a homomorphic public key cryptosystem

- Additional assumption: the order ω of plaintext space is either prime or hard to factor ($\mathbb{Z}_p, \mathbb{Z}_n$)

- The latter assumption can be weakened to “the smallest prime divisor of ω should be larger than N”

[Aiello/Ishai/Reingold 2001, Lipmaa 2003]
AIR/HOT Protocols

Bob has $\mu = (\mu_1, \ldots, \mu_N)$, Alice has σ. Alice wants to retrieve μ_σ

- Alice creates a new key pair and sends the public key to Bob

- Alice generates a random r and sends $c \leftarrow E_K(\sigma; r)$ to Bob

- For all $i \in [1, N]$ Bob does: Set $c_i \leftarrow (c \cdot E_K(-i; r_i))^{s_i} \cdot E_K(\mu_i; t_i)$, where r_i, s_i, t_i are newly generated random values

- Bob sends (c_1, \ldots, c_N) to Alice

- Alice decrypts $\mu_\sigma = D_K(c_\sigma)$
AIR/HOT Protocols: Correctness

Bob has \(\mu = (\mu_1, \ldots, \mu_N) \), Alice has \(\sigma \). Alice wants to retrieve \(\mu_\sigma \)

- Recall \(c \leftarrow E_K(\sigma; r) \) and \(c_i \leftarrow (c \cdot E_K(-i; r_i))^{s_i} \cdot E_K(\mu_i; t_i) \)

- Thus, \(c_i = E_K(\mu_i + s_i(\sigma - i); s_ir_i + t_i) \)

- When \(i = \sigma \) then \(c_i = E_K(\mu_i; s_ir_i + t_i) \)

- When \(i \neq \sigma \) then \(c_i = E_K(\ast; s_ir_i + t_i) \) for a random \(\ast \), since \(i \neq \sigma \) and \(s_i \) is random
OT: some applications

• Coin tossing: Bob creates two ciphertexts, one of them encrypts 1, another one encrypts 1. Bob proves to Alice that he encrypted correctly. Alice picks a random one.

• Yao’s circuit evaluation: a garbled input goes to the circuit. Alice should not get to know the garbled value of another input. Bob should not know which input is used.

• Private Equality Test: Alice has private input a, Bob has private input b. Alice must get to know whether $a = b$ and nothing more. Exercise: how to do it?