T-79.159 Cryptography and Data Security

Lecture 10: Pseudorandomness, Provable Security

Helger Lipmaa
Helsinki University of Technology
helger@tcs.hut.fi

Security Notions. Provable Security

- Definitional approach:
 - 1. First *define* what do you mean by security
 - * Define: What is a break?
 - * Correct definition is vital
 - 2. Thereafter construct a primitive that satisfies the definition

Security Notions. Provable Security

- ullet Construction of primitive B is often based on some other primitive A that satisfies some other definition
 - * Familiar reduction arguments: If A (is secure) and $A \Rightarrow B$ then B (is secure). If $\neg B$ and $A \Rightarrow B$ then $\neg A$
- Recall NP-completeness:
 - * If A is NP-complete and from an "efficient" algorithm b, solving B, one can deduce an polynomial-time algorithm a (that uses b as a subroutine) that solves A, then also B is NP-complete
- Same logic in provable security, but reductions must be tight

Ideal block cipher = Random permutation

- What is the most secure block cipher in this world?
- Answer: a family of random permutations

Random permutation (RP)

- Fix \mathcal{P} , \mathcal{K} , \mathcal{C} . Let Perm be the set of all permutations $f: \mathcal{P} \to \mathcal{C}$
- Random permutation: a randomly chosen permutation from Perm
- Permutation: if you have seen f(x), seeing f(x) again does not give any new information
- Random: if you have not seen f(x), you have no better strategy than to guess the value f(x), except that it must not be equal to f(y) for some f(y), $y \neq x$, that you have seen before

Random function (RF)

- "Ideal" when the primitive does not have to be bijective
 - * Stream ciphers, hash functions
- Random function = randomly chosen function
- If you have seen f(x), you already know it
- Otherwise, your best strategy is to guess f(x) randomly

Family of random permutations

- Let $k \in \mathcal{K}$ index a random permutation $f \in \mathsf{Perm}$
- Block cipher is a family of permutations, indexed by keys
- Random (block) cipher is a family of random permutations
- I.e., E_{k_1} and E_{k_2} are independent and random permutations when $k_1 \neq k_2$
- Example: OTP has $\mathcal{K} = \{0, 1\}$, E_0 is the permutation $(01) \rightarrow (01)$, E_1 is a permutation $(10) \rightarrow (01)$

Ideal ciphers: hazards

- Implementing requires a database of $|\mathcal{P}| \geq 2^{64}$ values
- The key corresponds one-to-one to the permutation, so $|\mathcal{K}| = |\mathcal{P}|!$, and one needs $\log_2 |\mathcal{P}|! \approx |\mathcal{P}| \log_2 |\mathcal{P}|$ bits to transport $|\mathcal{K}|$
- Less efficient than the OTP! (Why?)
- So we need something more practical...

Computational security

- Unconditional security: function is random, bitstring is random
- Computational security: function seems to be random, bitstring seems to be random
 - * ...to an adversary who has limited resources
- Limited = polynomial-time (in security parameter k, usually the key length) or in general, works in time t(k) for some function t

Pseudorandom permutations: Preliminaries

- PRP: a permutation that looks like a RP to a poly-time bounded adversary
- Let f be a family of permutations, $f: \mathcal{K} \times \mathcal{P} \to \mathcal{C}$
- Let X be a random variable (it might be output of an randomized algorithm) with a known distribution
- $x \leftarrow_R X$ denotes that x is chosen to be the value of the random variable X, according to this distribution
- $k \leftarrow_R \mathcal{K} k$ is a random element from the set \mathcal{K} (often uniform)

Oracle model (1/2)

- Oracle = subroutine, accessed in a black-box mode
 - * I.e., can give some inputs and receive corresponding outputs
- ... No access to the internals to oracle!

Oracle model (2/2)

- Oracle can be plugged in to another algorithm, exactly like a subroutine can be referenced by a pointer
- Denoted: A^B (A uses B as an oracle)
- Important complexity measure, query complexity *q*:
 - \star A calls the subroutine/queries the oracle q times

Distinguishing

• $A \varepsilon$ -distinguishes D^1 and D^2 if $|\Pr[x \leftarrow_R D^1 : A(x) = 1] - \Pr[x \leftarrow_R D^2 : A(x) = 1]| \ge \varepsilon$.

T-79.159 Cryptography and Data Security, 31.03.2004 Lecture 10: Pseudor., Provable Sec., Helger Lipmaa

Definition of an PRP

Fix k, the key length. Let E be a family of permutations (i.e., a block cipher), and let Perm be the family of all permutations

Intuitively: A has a success probability ε against a block cipher E, if it can distinguish E_K , with a random key, from the random permutation.

Definition. Let A be an algorithm. Define its success probability against the PRP E to be

$$\begin{aligned} \operatorname{Succ}_E^{\operatorname{PRP}}(A) := |\Pr_k[f \leftarrow_R E : A^f(k) = 1] \\ - \Pr_f[f \leftarrow_R \operatorname{Perm} : A^f(k) = 1]| \ . \end{aligned}$$

T-79.159 Cryptography and Data Security, 31.03.2004 Lecture 10: Pseudor., Provable Sec., Helger Lipmaa

Picture: PRP definition

(In reality, the green area should be really really small)

Definition of an PRP

Definition. We say that E is an (q, t, ε) -secure PRP if for <u>any</u> algorithm that spends at most t steps (in some well-defined machine model), queries the oracle at most q times, has the success probability $\leq \varepsilon$ of distinguishing E:

$$\operatorname{Succ}_f^{\operatorname{PRP}}(A) \leq \varepsilon \text{ for all } (t,q)\text{-machines } A$$
.

• The same adversary can achieve larger success probability if q and t are increased. Thus $\varepsilon = \varepsilon(q,t)$ depends on q and t.

Formal Def: Symmetric Cryptosystems

- Symmetric cryptosystem Π = a family of *pseudo-random functions* from $\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^{p(n)}$ for some polynomial p
- Security definition: consider a distinguishing game as in the case of PRPs, but now the goal is to distinguish E_K , for a randomly chosen K, from a randomly chosen function $f\{0,1\}^n \to \{0,1\}^{p(n)}$
- Symmetric cryptosystem Π is (q, μ, t, ε) -secure, if it cannot be ε -distinguished by any algorithm that works in time t and makes no more than q queries, with in total μ blocks of queried plaintext

Symmetric Cryptosystems: Constructions

- Standard construction:
 - \star A block cipher (a (q, t, ε) -secure PRP) + a good block cipher mode
- Block ciphers: security is heuristic
- But reduction must still be tight
 - \star q, t, ε in the security of Π must be "almost the same" as q, t, ε in the security of the block cipher

Block cipher modes: Security

- When proving security, assume that first you have an ideal block cipher (RP) with the concrete mode. Prove that then the cryptosystem is $(q_1, \mu_1, t_1, \epsilon_1)$ secure
- This gives you an idea of how much security can be achieved at all with this mode
- Substitute RO with a (q_2, t_2, ϵ_2) -secure PRP. Prove that the resulting cryptosystem is $(q_3, \mu_3, t_3, \epsilon_3)$ -secure for ϵ_3
- Give tight proofs: exhibit an adversary that meets the bound

Security of CBC mode

Theorem [Bellare, Desai, Jokipii, Desai, 1997] Let $E:\{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ be an (q_1,t_1,ε_1) -secure PRP. The cryptosystem CBC -E (E used in conjunction with CBC mode) is then $(q_2,\mu,t_2,\varepsilon_2)$ secure for some (q_2,t_2) , where $\mu=q_1\ell$ and $\varepsilon_2=\varepsilon_1+\frac{2\mu^2}{\ell^22^\ell}$.

This means that when using a secure block cipher with the CBC mode, then one can must have $\mu^2 \ll 2^{\ell}$ for the cryptosystem to be secure.

In other words: If the block length is ℓ bits then you can encrypt up to $2^{\ell/2}$ block with the CBC mode and still feel secure. The same holds for the CTR mode. Reason: *birthday paradox*

T-79.159 Cryptography and Data Security, 31.03.2004 Lecture 10: Pseudor., Provable Sec., Helger Lipmaa

The term $2^{\ell/2}$ in security of CTR

- Idea: can't reuse the keystream (affects security)
- What is the probability of reusing the keystream if ctr is chosen randomly?
- If ctr is maintained as a state and always increased, the keystream is never reused. Can encrypt 2^{ℓ} blocks!
- If ctr is chosen randomly, one has birthday paradox:
 - \star After $\sqrt{2^\ell}=2^{\ell/2}$ blocks, some part of the keystream is reused with a high probability

Importance of exact reductions

- We gave an exact reduction for the security of the CBC mode
- Thanks to that we know that encrypting more than $2^{\ell/2}$ bits by using the same key might be harmful
- In practice, ℓ is a fixed parameter
 - \star ℓ = 64 in the case of DES: never encrypt more than 2^{32} blocks with the same key
- In the case of "usual" complexity-theoretic reductions, you would know that you can encrypt to $p(\ell)$ block, where p is some polynomial

Importance of exact reductions

- "Usual" reduction is bad, since:
 - \star It does not guarantee that you can encrypt $f(\ell)$ blocks, where f is any super-polynomial function
 - * E.g., $f(\ell) = \ell^{\log_2 \log_2 \ell}$ bits are not guaranteed!
 - * But $f(64) = 46656 < \ell^3 \ll 2^{32}!$
 - ⋆ The results are only asymptotic
- Holy Grail of provable security: Give tight reductions for existing constructions, find new (efficient) constructions with even tighter restrictions

How to construct PRPs, PRFs?

- We know how to build cryptosystems, based on secure PRPs
- How to construct PRPs themselves?
- Is it an abstaction like a RP or can it be constructed?
- It can be constructed, but this requires tools from complexity theory and number theory

Naor-Reingold Number-Theoretic PRF Generator

• Group-theoretic setting (again): Primes $q, p, q \mid (p-1)$. Let g be an element of \mathbb{Z}_p^* , with order q, let G be the subgroup generated by g

• Let
$$\vec{a} = (a_0, \dots, a_n) \in \mathbb{Z}_q^{n+1}$$

- For any key $K=(p,q,g,\vec{a})$, and any input $x=x_1\dots x_n$, define $f_K(x):=(g^{a_0})^{\prod_{x_i=1}a_i}\ .$
- Define F_n to be the distribution induced when one chooses (some) n-bit prime p, (some) large prime divisor q of p-1 and (some) element g of order q in \mathbb{Z}_p^* , and a (random) element \vec{a} of \mathbb{Z}_q^{n+1} .

Naor-Reingold Number-Theoretic PRF Generator

- Naor, Reingold: the described construction is a secure PRF generator if the Decisional Diffie-Hellman assumption holds
- That is, a polynomial-time adversary cannot distinguish a random member of F_n from a random function $\{0,1\}^n \to G$

Reminder: Distributions

• Uniform probability distribution U_n on $\{0,1\}^n$: if X follows U_n then

$$\Pr[X = x] = 2^{-n} \text{ if } |x| = n.$$

- ullet Support of a distribution D= set of elements x that have nonzero probability
- Let D, E be families of distributions, such that the support of D_n, E_n is a subset of $\{0,1\}^n$
- $x \leftarrow_R D_n x$ is drawn from $\{0,1\}^n$ according to D_n

Pseudorandom generator

- Let $f: \{0,1\}^n \to \{0,1\}^m$, m > n, be an efficient algorithm
- Define Succ $_f^{\mathsf{PRG}}(A) := |\Pr[x \leftarrow_R U_m : A(x) = 1] \Pr[x \leftarrow_R f(U_n) : A(x) = 1]|$
- I.e.: A is successful if she distinguishes the output of f (keystream) on an uniformly distributed short input (seed) from a uniformly distributed long string
- f is a (t, ε) -secure pseudorandom generator if no A that takes $\leq t$ steps has $\operatorname{Succ}_f^{\operatorname{PRG}}(A) \geq \varepsilon$

Synchronous stream cipher = PRG

- Objective of a s. stream cipher: The output of G (keystream) on an uniformly distributed short input (seed) should be indistinguishable from a uniformly distributed long string
- Thus, a synchronous stream cipher can be modeled as a (t, ε) -secure pseudorandom generator (PRG) G, with $E_K(x) = x \oplus G(K)$, where |K| = n and |x| = m
- Ideally: t "big" ($\approx 2^n$), ε small ($\approx 2^{-n}$)
- If we omit (t, ε) we usually assume that t is very big and ε is very small

Block and stream ciphers

Block cipher: family of permutations, $E: \mathcal{K} \times \mathcal{P} \to \mathcal{C}$

*** **Ideally** Modeled by families of pseudorandom permutations

Synchronous stream cipher: key stream function G

*** **Ideally** Modeled by *pseudorandom generators*

Reminder: One-way functions

- Intuition: it is easy to compute f, but hard to invert it
- Example: (1) multiplication of two numbers. Easy to multiply, hard to factor; (2) exponentiation in a subgroup G of order q in \mathbb{Z}_p^* , where $q \mid (p-1)$ and q, p are primes. Easy to compute g^x , hard to find x (discrete logarithm), given (g, g^x)
- Thus, there seem to be natural candidates for OWFs
- Formally: $Succ_f^{OWF}(A) = \Pr[f(A(f(x)) = f(x))]$
- One-way permutation: Permutation that is an OWF

$OWF \Rightarrow PRG$

For $x, r \in \{0, 1\}^n$, define $x \cdot r = x_1 r_1 + \cdots + x_n r_n$ to be their dot product

Theorem (Impagliazzo, Levin, Luby, 1989) Let $f: \{0,1\}^n \to \{0,1\}^n$ be a one-way permutation. Let $x, r \leftarrow_R U_n$. Then $g: \{0,1\}^n \to \{0,1\}^{2n+1}$,

$$g(x) = f(x)||r||x \cdot r$$

is a (t, ε) -pseudorandom generator for reasonable (t, ε)

One can also construct a PRG given any OWF (the same paper)

Thus, we can construct a PRG, given the existence of an OWF

$OWF \Rightarrow PRF \Rightarrow PRP$

- Goldreich, Goldwasser, Micali (1984): A PRF can be constructed from any PRG
- Luby, Rackoff (1988): A PRP can be constructed from any PRF (Feistel ciphers)
- Opposite direction also holds! (block cipher modes)
- Combining these results: block ciphers and stream ciphers exist exactly if one-way functions exist. There are efficient algorithms for transforming a secure stream cipher to a secure block cipher, and vice versa

Caveats

- Efficiency: known candidates of OWF are severely less efficient than
 AES and other efficient block and stream ciphers
- Provable security comes at the expense of efficiency!
 - * At least currently: it is not known how to prove the security of of efficient block and stream ciphers
- Security: It is not known if one-way functions exist, although it is strongly conjectured that this is the case