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Security Notions. Provable Security

e Definitional approach:

1. First define what do you mean by security

x Define: What is a break?
x Correct definition is vital

2. Thereafter construct a primitive that satisfies the definition
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Security Notions. Provable Security

e Construction of primitive B is often based on some other primitive A
that satisfies some other definition

* Familiar reduction arguments: If A (is secure) and A = B then B
(is secure). If =B and A = B then - A

e Recall NP-completeness:

* If A Is NP-complete and from an “efficient” algorithm b, solving B,
one can deduce an polynomial-time algorithm a (that uses b as a
subroutine) that solves A, then also B is NP-complete

e Same logic in provable security, but reductions must be tight
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ldeal block cipher = Random permutation

e What is the most secure block cipher in this world?

e Answer: a family of random permutations
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Random permutation (RP)

e Fix P, IC, C. Let Perm be the set of all permutations f : P — C

e Random permutation: a randomly chosen permutation from Perm

e Permutation: if you have seen f(x), seeing f(x) again does not give
any new information

e Random: if you have not seen f(x), you have no better strategy than
to guess the value f(x), except that it must not be equal to f(y) for
some f(y), y = x, that you have seen before
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Random function (RF)

e “ldeal”’ when the primitive does not have to be bijective

* Stream ciphers, hash functions

e Random function = randomly chosen function

e If you have seen f(x), you already know it

e Otherwise, your best strategy is to guess f(x) randomly
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Family of random permutations

e Let k € K index a random permutation f € Perm

e Block cipher is a family of permutations, indexed by keys

e Random (block) cipher is a family of random permutations

e le, E;, and Ej, are independent and random permutations when
k1 7 ko

e Example: OTP has K = {0, 1}, Ey is the permutation (01) — (01),
F is a permutation (10) — (01)
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|deal ciphers: hazards

e Implementing requires a database of |P| > 2°4 values

e The key corresponds one-to-one to the permutation, so || = |P|!,
and one needs logs |P|! = |P|logy |P| bits to transport | K|

e Less efficient than the OTP! (Why?)

e S0 we need something more practical. . .
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Computational security

e Unconditional security: function is random, bitstring is random

e Computational security: function seems to be random, bitstring seems
to be random
* ...to an adversary who has limited resources

e Limited = polynomial-time (in security parameter k, usually the key
length) or in general, works in time ¢(k) for some function ¢
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Pseudorandom permutations: Preliminaries

e PRP: a permutation that looks like a RP to a poly-time bounded adver-
sary

e Let f be a family of permutations, f : K x P — C

e Let X be arandom variable (it might be output of an randomized algo-
rithm) with a known distribution

e r —p X denotes that x is chosen to be the value of the random
variable X, according to this distribution

e k «—p K — kisarandom element from the set K (often uniform)
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Oracle model (1/2)

e Oracle = subroutine, accessed in a black-box mode

* |.e., can give some inputs and receive corresponding outputs

e ...NoO access to the internals to oracle!
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Oracle model (2/2)

e Oracle can be plugged in to another algorithm, exactly like a subroutine
can be referenced by a pointer

e Denoted: AP (A uses B as an oracle)

e Important complexity measure, query complexity q:

* A calls the subroutine/queries the oracle g times
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Distinguishing

Guess: which algorithm is
behind the line:D* or D?

e A e-distinguishes D1 and D? if
|Prlz «—p DY : A(z) = 1] — Pr[z «—p D?: A(z) = 1]| > «.
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Definition of an PRP

Fix k, the key length. Let E be a family of permutations (i.e., a block cipher),
and let Perm be the family of all permutations

Intuitively: A has a success probability € against a block cipher E, if it can
distinguish E -, with a random key, from the random permutation.

Definition . Let A be an algorithm. Define its success probability against
the PRP E to be

SucchRP(A) 1= Prif «rE: AT (k) = 1]
- F}r[f —p Perm: AT (k) = 1] .
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Picture: PRP definition

r Pe The set of all permutations
—R m

|

Distinguish!
- N\R\GE

One block cipher

(In reality, the green area should be really really small)
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Definition of an PRP

Definition . We say that E is an (g, t,e)-secure PRP if for any algorithm
that spends at most ¢ steps (in some well-defined machine model), queries
the oracle at most g times, has the success probability < ¢ of distinguishing

E:

Succ?RP(A) < ¢ for all (¢, g)-machines A .

e The same adversary can achieve larger success probability if g and ¢
are increased. Thus e = ¢(q, t) depends on ¢ and t.

T-79.159 Cryptography and Data Security, 31.03.2004 Lecture 10: Pseudor., Provable Sec., Helger Lipmaa

16



Formal Def. Symmetric Cryptosystems

e Symmetric cryptosystem 1 = a family of pseudo-random functions
from {0, 1}* x {0,1}" — {0, 1}?(") for some polynomial p

e Security definition: consider a distinguishing game as in the case of
PRPs, but now the goal is to distinguish E-, for a randomly chosen
K, from a randomly chosen function £{0,1}" — {0, 1}»(")

e Symmetric cryptosystem I is (q, u,t,c)-secure, if it cannot be e-
distinguished by any algorithm that works in time ¢ and makes no more
than g queries, with in total i blocks of queried plaintext
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Symmetric Cryptosystems: Constructions

e Standard construction:

x A block cipher (a (g, t, )-secure PRP) + a good block cipher mode

e Block ciphers: security is heuristic

e But reduction must still be tight

* ¢, t, € In the security of 1 must be “almost the same” as g, t, € In
the security of the block cipher
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Block cipher modes: Security

e \When proving security, assume that first you have an ideal block cipher
(RP) with the concrete mode. Prove that then the cryptosystem is

(q1,p11,t1,€1) secure

e This gives you an idea of how much security can be achieved at all
with this mode

e Substitute RO with a (g, to, €5)-secure PRP. Prove that the resulting
cryptosystem is (g3, 3, t3, €3)-secure for e3

e Give tight proofs: exhibit an adversary that meets the bound
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Security of CBC mode

Theorem [Bellare, Desai, Jokipii, Desai, 1997] Let E : {0,1}¢ x
{0,1}¢¥ — {0,1} be an (qq,t1,e1)-secure PRP. The cryptosystem
CBC — E (F used in conjunction with CBC mode) is then (qQ,,u,tQ,&‘Q)
secure for some (go,t>), where yp = g1¢ and eo = ¢4 + 2 6226

This means that when using a secure block cipher with the CBC mode,
then one can must have p2 < 2¢ for the cryptosystem to be secure.

In other words: If the block length is ¢ bits then you can encrypt up to 2t/2
block with the CBC mode and still feel secure. The same holds for the CTR
mode. Reason: birthday paradox
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The term 2¢/2 in security of CTR

e Idea: can't reuse the keystream (affects security)

e What is the probability of reusing the keystream if ctr is chosen ran-
domly?

e If ctr is maintained as a state and always increased, the keystream is
never reused. Can encrypt 2¢ blocks!

e If ctr is chosen randomly, one has birthday paradox:

x After vV2¢ = 2¢/2 plocks, some part of the keystream is reused
with a high probability

T-79.159 Cryptography and Data Security, 31.03.2004 Lecture 10: Pseudor., Provable Sec., Helger Lipmaa

21



Importance of exact reductions

e \We gave an exact reduction for the security of the CBC mode

e Thanks to that we know that encrypting more than 2t/2 pits by using
the same key might be harmful

e In practice, ¢ is a fixed parameter

x ¢ = 64 in the case of DES: never encrypt more than 232 blocks
with the same key

e In the case of “usual’ complexity-theoretic reductions, you would know
that you can encrypt to p(£) block, where p is some polynomial
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Importance of exact reductions

e “Usual” reduction is bad, since:

% It does not guarantee that you can encrypt f(#¢) blocks, where f is
any super-polynomial function

x E.g., f(£) = 10921092 hits are not guaranteed!
x But f(64) = 46656 < 3 <« 232
* The results are only asymptotic
e Holy Grall of provable security: Give tight reductions for existing con-

structions, find new (efficient) constructions with even tighter restric-
tions
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How to construct PRPs, PRFs?

e We know how to build cryptosystems, based on secure PRPs

e How to construct PRPs themselves?

e Is it an abstaction like a RP or can it be constructed?

e It can be constructed, but this requires tools from complexity theory
and number theory
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Naor-Reingold Number-Theoretic PRF Generator

e Group-theoretic setting (again): Primes ¢,p, q | (p — 1). Let g be an
element of Zy, with order g, let G be the subgroup generated by g

o Letd = (ag,...,an) EZZL_H

e Forany key K = (p,q,g,d), and any input xt = x1 ... xp, define

fre(@) = (goo)l =1

e Define F}, to be the distribution induced when one chooses (some) n-
bit prime p, (some) large prime divisor g of p — 1 and (some) element
g of order ¢ in Z7, and a (random) element a of ZZ’"’l.
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Naor-Reingold Number-Theoretic PRF Generator

e Naor, Reingold: the described construction is a secure PRF generator
If the Decisional Diffie-Hellman assumption holds

e That is, a polynomial-time adversary cannot distinguish a random
member of F;, from a random function {0, 1}" — G
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Reminder: Distributions

e Uniform probability distribution U, on {0, 1}™: if X follows U,, then

PriX =x]=2"" if|z| =n.

e Support of a distribution D = set of elements x that have nonzero
probability

e Let D, E be families of distributions, such that the support of D,,, E),
IS a subset of {0, 1}"

e v —p Dy — xis drawn from {0, 1}"™ according to Dy,
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Pseudorandom generator

o Let f:4{0,1}" — {0,1}"™, m > n, be an efficient algorithm

e Define
SucctRC(A) = |Prlz —pg Un : A(z) = 1] — Pr[z «—p f(Un) :
A(z) = 1]

e l.e.: Ais successful if she distinguishes the output of f (keystream) on
an uniformly distributed short input (seed) from a uniformly distributed
long string

e fis a (t,e)-secure pseudorandom generator if no A that takes < ¢
steps has Succ?RG(A) > e
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Synchronous stream cipher = PRG

e Objective of a s. stream cipher: The output of GG (keystream) on an uni-
formly distributed short input (seed) should be indistinguishable from
a uniformly distributed long string

e Thus, a synchronous stream cipher can be modeled as a (¢, €)-secure
pseudorandom generator (PRG) G, with By (x) = x & G(K), where
K| =nand|x| =m

e Ideally: t “big” (= 2™), e small (= 27")

e If we omit (¢, €) we usually assume that ¢ is very big and ¢ is very small
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Block and stream ciphers

Block cipher : family of permutations, £ :  x P — C

*** |deally Modeled by families of pseudorandom permutations

Synchronous stream cipher: key stream function G

*** |deally Modeled by pseudorandom generators
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Reminder: One-way functions

e Intuition: it is easy to compute f, but hard to invert it

e Example: (1) multiplication of two numbers. Easy to multiply, hard
to factor; (2) exponentiation in a subgroup G of order g in Z;, where
q| (p— 1) and g, p are primes. Easy to compute g%, hard to find x
(discrete logarithm), given (g, g%)

e Thus, there seem to be natural candidates for OWFs
i OWF _ —
e Formally: Succf (A) =Pr[f(A(f(x)) = f(x)]

e One-way permutation: Permutation that is an OWF
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OWE = PRG

Forx,r € {0,1}", definex-r = xz17r1+ - -+ xnrn to be their dot product

Theorem (Impagliazzo, Levin, Luby, 1989) Let f : {0,1}" — {0,1}" be a
one-way permutation. Let z,r «p Uy,. Then g : {0,1}" — {0, 1}2n+1

g(z) = f@)|Irllz - r

is a (¢, e)-pseudorandom generator for reasonable (¢, )
One can also construct a PRG given any OWF (the same paper)

Thus, we can construct a PRG, given the existence of an OWF
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OWF => PRF = PRP

e Goldreich, Goldwasser, Micali (1984): A PRF can be constructed from
any PRG

e Luby, Rackoff (1988): A PRP can be constructed from any PRF (Feistel
ciphers)

e Opposite direction also holds! (block cipher modes)

e Combining these results: block ciphers and stream ciphers exist ex-
actly if one-way functions exist. There are efficient algorithms for trans-
forming a secure stream cipher to a secure block cipher, and vice versa
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Caveats

e Efficiency: known candidates of OWF are severely less efficient than
AES and other efficient block and stream ciphers
e Provable security comes at the expense of efficiency!
* At least currently: it is not known how to prove the security of of

efficient block and stream ciphers

e Security: It is not known if one-way functions exist, although it is
strongly conjectured that this is the case
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