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We wish to find n (‘number of persons”) as a function of m (‘number of days
in year”), so that probability of at least one match is 1

2 .
Since probability of each pair forming a match is 1

m and there are n(n−1)
2

pairs, the product probability of 1
2 is reached at:
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)
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taking logs we get:
n(n− 1)

2
ln(1− 1

m
) = − ln 2

which can be written as a quadratic equation as a function of n:
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ln 4
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= 0

The unique positive solution for this lies at:
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√
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4
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However, this is cumbersome, and we would like to have an easy asymptotic
expression for n. We start by bounding ln(1− 1

m ).

Well-known Mercator series (a Taylor series for logs) is usually written as:

ln(1 + x) = x− x2
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this easily translates into

ln(1− 1
x

) = − 1
x
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Inspection reveals that this monotonically increasing for x > 2 and the following
bounds hold:

− 1
x
− 1

x2
< ln(1− 1

x
) < − 1

x
.

Substituting these into the original “exact” solution and observing trivially that
1/( 1

x + 1
x2 ) = x2/(x + 1) we get:
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Removing those terms that vanish when m→∞, we clearly get:

n ≈
√

ln 4
√

m ≈ 1.1774
√

m.

NOTE: This derivation not entirely correct! The original assump-
tion that birthday coincidence “events” are independent is not strictly
true, it is just a very good approximation for large m.


