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We wish to find n (‘number of persons”) as a function of m (‘number of days
in year”), so that probability of at least one match is %
Since probability of each pair forming a match is % and there are @

pairs, the product probability of % is reached at:
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taking logs we get:
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which can be written as a quadratic equation as a function of n:
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The unique positive solution for this lies at:
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However, this is cumbersome, and we would like to have an easy asymptotic
expression for n. We start by bounding In(1 — -1).

Well-known Mercator series (a Taylor series for logs) is usually written as:

22 23 2
In(1 —r— 4.
n(l+z)=cz 7 T 3 T
this easily translates into
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Inspection reveals that this monotonically increasing for > 2 and the following

bounds hold:
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Substituting these into the original “exact” solution and observing trivially that

/(2 + %) =2?/(z + 1) we get:
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Removing those terms that vanish when m — oo, we clearly get:
n =~ Vindy/m ~ 1.1774y/m.

NOTE: This derivation not entirely correct! The original assump-
tion that birthday coincidence “events” are independent is not strictly
true, it is just a very good approximation for large m.



