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Security Notions. Provable Security

e Definitional approach: First define what do you mean by security

e ...Correct definition is vital

e Thereafter construct a primitive that satisfies the definition

e Construction of primitive B is often based on some other primitive A
that satisfies some other definition

* Familiar reduction arguments: If A (is secure) and A = B then B
(is secure). If =B and A = B then —-A
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Security Notions. Provable Security

e Construction of primitive B is often based on some other primitive A
that satisfies some other definition

* Familiar reduction arguments: If A (is secure) and A = B then B
(is secure). If =B and A = B then —-A

e Recall NP-completeness: If A is NP-complete and from an “efficient”
algorithm b, solving B, one can deduce an polynomial-time algorithm a
(that uses b as a subroutine) that solves A, then also B is NP-complete

e Same logic in provable security, but reductions must be tight
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ldeal block cipher = Random permutation

e What is the most secure block cipher in this world?

e Answer: a family of random permutations
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Random permutation (RP)

e Fix P, IC, C. Let Perm be the set of all permutations f : P — C

e Random permutation: a randomly chosen permutation from Perm

e Permutation: if you have seen f(x), seeing f(x) again does not give
any new information

e Random: if you have not seen f(x), you have no better strategy than
to guess the value f(x), except that it must not be equal to f(y) for
f(y) that you have seen before
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Random function (RF)

e Used when the cipher does not have to be bijective (e.g., stream ci-
phers)

e Random function = randomly chosen function

e If you have seen f(x), you already know it

e If you have not seen f(x), your best strategy is to guess f(x) ran-
domly

T-79.159 Cryptography and Data Security, 02.04.2003 Lecture 9: Pseudorandomness, Provable Security,

Helger Lipmaa



Family of random permutations

e Let k € K index a random permutation f € Perm
e Block cipher is a family of permutations, indexed by keys
e Random (block) cipher is a family of random permutations

e lLe, E;, and Ej, are independent and random permutations when
ki # k2

e Example: OTP has K = {0, 1}, Eg is a permutation (01) — (01),
F4 is a permutation (10) — (01)
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|deal ciphers: hazards

e Implementing requires a database of |P| > 2°4 values

e The key corresponds one-to-one to the permutation, so || = |P|!,
and one needs logs |P|! = |P|logy |P| bits to transport |K]|

e Less efficient than the OTP! (Why?)

e S0 we need something more practical. . .
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Computational security

e Unconditional security: function is random, bitstring is random

e Computational security: function seems to be random, bitstring seems
to be random

e ...to an adversary who has limited resources

e Limited = polynomial-time (in security parameter k, usually the key
length) or in general, works in time ¢(k) for some function ¢
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Pseudorandom permutations: Preliminaries

e PRP: a permutation that looks like a RP to a poly-time bounded adver-
sary

e Let f be a family of permutations, f : K x P — C

e Let X be arandom variable (it might be output of an randomized algo-
rithm) with a known distribution

e r —p X denotes that x is chosen to be the value of the random
variable X, according to this distribution

e k«+—p K — kisarandom element from the set K (often uniform)
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Oracle model (1/2)

e Oracle = subroutine, accessed in a black-box mode

e ...l.e., can give some inputs and receive corresponding outputs

e ...NoO access to the internals to oracle!
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Oracle model (2/2)

e Oracle can be plugged in to another algorithm, exactly like a subroutine
can be referenced by a pointer

e Denoted: AP (A uses B as an oracle)

e A calls the subroutine/queries the oracle ¢ times
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Distinguishing

D!t D?

Guess: which algorithm is
behind the line:D?! or D?

o A e-distinguishes D1 and D? if |Pr[z «—p D! : A(z) = 2] —
Prlz «—p D?: A(z) =2]| > «.

T-79.159 Cryptography and Data Security, 02.04.2003 Lecture 9: Pseudorandomness, Provable Security,

Helger Lipmaa

13



Definition of an PRP

Fix k, the key length. Let E be a family of permutations (i.e., a block cipher),
and let Perm be the family of all permutations

Intuitively: A has a success probability € against a block cipher E, if it can
distinguish E -, with a random key, from the random permutation.

Let A be an algorithm. Define its success probability against the PRP E to
be
SucchRP(A) 1= Prif «r E: AT (k) = 1]

— F}r[f —p Perm: AT (k) = 1] .
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Picture: PRP definition

f Pe The set of all permutations
R rm

_

\fi—R E

One block cipher

(In reality, the green area should be really really smal)
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Definition of an PRP

e We say that F is an (q,t,e)-secure PRP if for any algorithm that
spends at most ¢ steps (in some well-defined machine model), queries
the oracle at most g times, has the success probability < e of distin-
guishing F, Succ?RP(A) < e.

e The same adversary can achieve larger success probability if ¢ and ¢
are increased. Thus e = ¢(q, t).
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Formal Def. Symmetric Cryptosystems

e Symmetric cryptosystem I = pseudo-random function from {0, 1}" —
{0, 1}17(”) for some polynomial p

e Security definition: consider a distinguishing game as in the case of
PRPs, but now we have a randomly chosen permutation is replaced
with a randomly chosen function

e Symmetric cryptosystem I is (q, u,t,c)-secure, if it cannot be e-
distinguished by any algorithm that works in time ¢ and makes no more
than ¢ queries, with in total i blocks of queried plaintext
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Symmetric Cryptosystems: Constructions

e Standard construction: A block cipher (a (q,t,)-secure PRP) + a
good block cipher mode

e Block ciphers: security is heuristic

e But reduction must still be tight
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Block cipher modes: Security

e \When proving security, assume that first you have an ideal block cipher
(RP) with the concrete mode. Prove that then the cryptosystem is

(Q17 Hi, tla 6].) secure

e This gives you an idea of how much security can be achieved at all
with this mode

e Substitute RO with a (g, to, €5)-secure PRP. Prove that the resulting
cryptosystem is (g3, 113, t3, €3)-secure for e3

e Give tight proofs: exhibit an adversary that meets the bound
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Security of CBC mode

Theorem Let E : {0,1} x {0,1} — {0,1}¢ be an (q1,t1,£1)-secure
PRP. The cryptosystem CBC — F (£ used in conjunction with CBC mode)
is then (g»o, 1, t>,e5) secure for some (go,t>), where p = g1£ and g5, =

2 2
e1 + 62%'
This means that when using a secure block cipher with the CBC mode,
then one can must have p? < 2¢ for the cryptosystem to be secure.

In other words: If the block length is £ bits then you can encrypt up to 2t/2
block with the CBC mode and still feel secure. The same holds for the CTR
mode. Reason: birthday paradox
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The term 2¢/2 in security of CTR

e Idea: can’t reuse the keystream (affects security)

e What is the probability of reusing the keystream if ctr is chosen ran-
domly?

e If ctr is maintained as a state and always increased, the keystream is
never reused. Can encrypt 2¢ blocks!

e If ctr iIs chosen randomly, one has birthday paradox:

o ...after vV2¢ = 2¢/2 plocks, some part of the keystream is reused with
a high probability
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Importance of exact reductions

e \We gave an exact reduction for the security of the CBC mode

e Thanks to that we know that encrypting more than 2¢/2 pits by using
the same key might be harmful

e Now, / is a fixed parameter: say, £ = 64 (in the case of DES)

e In the case of “usual’ complexity-theoretic reductions, you would know
that encrypting more than p(¥¢), p some polynomial, bits is harmful
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Importance of exact reductions

e Bad, since:

x You usually do not know p — and (say) ¢* and ¢2 give very different
safety bounds (224 and 212 bits, respectively),

% Polynomial p(¢) is often a very small number

+ If we would know that we can securely encrypt ¢4 bits, this would
make 228 if ¢ = 128, while with safety bound 2¢/2, we can
encrypt 264 bits!

e Holy Grall of provable security: Give tight reductions for existing con-
structions, find new (efficient) constructions with even tighter restric-
tions
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How to construct PRPs, PRFs?

e We know how to build cryptosystems, based on secure PRPs

e How to construct PRPs themselves?

e Is it an abstaction like a RP or can it be constructed?

e It can be constructed, but this requires tools from complexity theory
and number theory
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Naor-Reingold Number-Theoretic PRF Generator

e Group-theoretic setting (again): Primes ¢,p, q | (p — 1). Let g be an
element of Zy, with order g, let G be the subgroup generated by g

o Letd = (ap,...,an) EZZ’_H

e Forany key K = (p,q,g,a), and any input x = x1 ...xn, define

fie(@) = (groylleimr i

e Define F;, to be the distribution induced when one chooses (some) n-
bit prime p, (some) large prime divisor g of p — 1 and (some) element
g of order ¢ in Z¥, and a (random) element @ of ZZ}+1.
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Naor-Reingold Number-Theoretic PRF Generator

e Naor, Reingold: the described construction is a secure PRF generator
If the Decisional Diffie-Hellman assumption holds

e That is, a polynomial-time adversary cannot distinguish a random
member of F;, from a random function {0, 1}" — G
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Reminder: Distributions

e Uniform probability distribution U, on {0, 1}™: if X follows U,, then
PriX =z]=2"" if|x| =n.

e Support of a distribution D = set of elements x that have nonzero
probability

e Let D, F be families of distributions, such that the support of D, E;,
IS a subset of {0, 1}"

e xr «—p Dy — xis drawn from {0, 1}"™ according to Dy,
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Pseudorandom generator

o Let f:4{0,1}" — {0,1}™, m > n, be an efficient algorithm

o Define Succi"®(A) = |Prlz «pg Un : A(z) = 1] — Prlz <
f(Un) + A(z) = 1]

e l.e.: Aissuccessful if she distinguishes the output of f (keystream) on
an uniformly distributed short input (seed) from a uniformly distributed

long string

e fis a (t,e)-secure pseudorandom generator if no A that takes < ¢
steps has Succ?RG(A) > e
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Synchronous stream cipher = PRG

e Objective of a s. stream cipher: The output of GG (keystream) on an uni-
formly distributed short input (seed) should be indistinguishable from
a uniformly distributed long string

e Thus, a synchronous stream cipher can be modeled as a (¢, €)-secure
pseudorandom generator (PRG) G, with Ex(z) = =z & G(K), where
K| =mnand |z| =m

e Ideally: t “big” (= 2"), e small (= 27 7)

e If we omit (¢, ¢) we usually assume that ¢ is very big and ¢ is very small
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Block and stream ciphers

e Block cipher: family of permutations, £ : K x P — C

Ideally Modeled by families of pseudorandom permutations

e (Synchronous) stream cipher: key stream function G

Ideally Modeled by pseudorandom generators
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Reminder: One-way functions

e Intuition: it is easy to compute f, but hard to invert it

e Example: (1) multiplication of two numbers. Easy to multiply, hard
to factor; (2) exponentiation in a subgroup G of order g in Z;, where
q| (p— 1) and g, p are primes. Easy to compute g%, hard to find x
(discrete logarithm), given (g, g*)

e Thus, there seem to be natural candidates for OWFs
e Formally: SuccOWF ((A) = Pr[f(A(f(x)) = =]

e One-way permutation: Permutation that is an OWF
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OWE = PRG

Forx,r € {0,1}", definex-r = xz17r1+ - -+ xnrn to be their dot product

Theorem (Impagliazzo, Levin, Luby, 1989) Let f : {0,1}" — {0,1}" be a
one-way permutation. Let z,r «p Uy. Then g : {0,1}" — {0, 1}2n+1

g(z) = f@)|rllz - r

is a (¢, e)-pseudorandom generator for reasonable (¢, )
One can also construct a PRG given any OWF (the same paper)

Thus, we can construct a PRG, given the existence of an OWF
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OWF => PRF = PRP

e Goldreich, Goldwasser, Micali (1984): A PRF can be constructed from
any PRG

e Luby, Rackoff (1988): A PRP can be constructed from any PRF (Feistel
ciphers)

e Opposite direction also holds! (block cipher modes)

e Combining these results: block ciphers and stream ciphers exist ex-
actly if one-way functions exist. There are efficient algorithms for trans-
forming a secure stream cipher to a secure block cipher, and vice versa
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Caveats

e Efficiency: known candidates of OWF are severely less efficient than
AES and other efficient block and stream ciphers
e Provable security comes at the expense of efficiency!
* At least currently: it is not known how to prove the security of of

efficient block and stream ciphers

e Security: It is not known if one-way functions exist, although it is
strongly conjectured that this is the case
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