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Recap

• Until now, we have been mostly talking about confidentiality : how to
keep data secret

• Two problems with the secret key cryptography: key distribution and
authentication (with non-repudiation)

• Key distribution: Diffie-Hellman and derivatives

• Topic of today’s talk: identification and authentication
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How to prove that you are who you are?

• Prove that you own something

Classically: passport, driver license, key

• Prove that you know something

Classically: password

• Prove that you are something

Semiclassically: biometrics, picture
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Cryptographic approach

• Remember, we talk about digital communication

• Proving that you are something almost impossible (biometrics is often
deceiving, and it is not our area)

• Proving that you own something: ok, but own what?

? Own a book with passwords? This is then proving that you know
something (passwords!)

• Proving knowledge: this is cryptographic approach
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Major concept: Proofs of knowledge

• Intuition: you are P if you know her secret key. You prove the knowl-
edge of this secret to the verifier

• All possible verifiers V know the public key, and can verify the proof,
based on that

• Security criterion 1:

Pr[V accepts P ’s proof] =

1− ε , P knows secret

ε , P does not know secret .

• Criterion 2: After (possibly many) interactions with a prover, V should
not be able to imposter her
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Nontransferability vs Nonrepudiation

Identification: You identify yourself as Peggy P , by proving you know her
secret. Verifier V must not be able to replay your role with some other
verifier (nontransferability)

Authentication: You bind some data to yourself, so that the verifier can
later prove to others that this document was authenticated by you (you
cannot repudiate signing: nonrepudiation).

Nonrepudiation 6= Nontransferability!

• MACs made it possible to have authentication without nonrepudia-
tion

T-79.159 Cryptography and Data Security, 12.03.2003 Lecture 6: Authentication, Helger Lipmaa

6



Signatures: shortly

• You must authenticate some data m as coming from you

? Everybody can see that it is from you

• Usage example: legal documents

? Signature must be binding

? You may get sued based on your signature. Several countries have
digital signature laws

• We will touch practical aspects in a later lecture (in particular how to
bind you with your secret)
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Signatures: shortly

• Signing: a mathematical function of the data m and Alice’s secret key
secret skA,

s = sign(skA, m) .

• Verification: function that accepts if s was signed by Alice:

s = sign(skA, m) if and only if ver(pkA, m, s) = 1

• Initial idea (1975–1980): For any public key cryptosystem, use its se-
cret key for signing and the public key for verification
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RSA signature scheme

• Public key: (e, n), n = pq, where p, q are large primes and e is a
public exponent

• Secret key: (p, q, d), where d is the secret exponent

• Signing m: s = md mod n

• Verification: Check whether m =? se mod n

• Bad! We will see later, why
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Identification protocols: idea (1/2)

• A proves her identity to B

• A must know the secret, it is not sufficient if she replays an old session

? Cannot be achieved if B’s actions are deterministic

• B must not be able to replay the protocol to C to pretend being A

? Cannot be achieved if A’s actions are deterministic

• Thus, an identification protocol must include some randomness, sup-
ported by both A and B
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Identification protocols: idea (2/2)

• To have mutual randomness, A must send a message that depends
on B’s random coins, and the same for B

• General idea, challenge-response:

? A sends a random-looking element to B,

? B challenges A with a random message,

? A responds with a message that shows that she knows the secret

• Thus, interactivity is needed
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Randomness and interactivity

• Very important: randomness and interactivity are needed to achieve
many cryptographic goals

Signing Encryption Identification
Randomness No∗ Yes Yes
Interactivity No No Yes

∗ Many signature schemes still use randomness (only in a very few settings
it is known how to make deterministic and yet secure signature schemes)
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Identification protocols: usage scenarios

• Smart doors: use smartcard to get in

• ATM: identify yourself as a legal customer

• Different websites, e-banking

• Etc

Common problem: must avoid re-execution of the protocol by somebody
else
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3-round proofs of knowledge: history

• The first known three-move (challenge-response) proof of knowledge
is by Fiat and Shamir (based on the difficulty of factoring)

• . . . extended later by Fiat, Feige and Shamir (1988) and finally by Feige
and Shamir (1990) that defined the notion of “witness hiding”.

• Other desirable objectives of identification protocols are: special
honest-verifier zero-knowledge, collision intractability, proofs of knowl-
edge, special soundness. A witness hiding proof of knowledge can be
used as a secure identification scheme.
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Some more 3R identification protocols

1988 — Guillou-Quisquater
1990 — Ong-Schnorr (witness hiding, !PoK, CI, !SS)
1991 — Schnorr (SS, SHVZK, PoK)
1992 — Brickell-McCurley (witness hiding)
1992 — Okamoto-Schnorr (witness hiding)
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Notation

• If A is an algorithm, then the notation

a← A(b)

refers to the computation of the output “a”, on input bit string “b”.

• If V is a set, v ← V denotes uniform and random selection of an
element v from V .

• Red variables are known only to A. Blue variables are known only to
B, green variables are known to both from the start of the protocol
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Faulty first idea for protocol

• Use something like RSA-based authentication, where w (witness) is
the secret key of A and e is the corresponding public key, and c is a
random challenge:

c

z ← cw mod n

c
?
= ze mod n

A B

z

c← {0,1}∗

This prevents A from replaying the protocol.

Still bad. Why?
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Faulty first idea for protocol

c

z ← cw mod n

c
?
= ze mod n

A B

z

c← {0,1}∗

Weakness: the signed texts are chosen solely by B, and this may allow
the verifier to mount chosen-text attacks.
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Σ-Protocols. General Setting (1/2)

• Σ-protocol is a three-move protocol between two parties, “prover” A

and “verifier” B, where the prover acts first.

• The prover and verifier are modeled as probabilistic polynomial time
interactive Turing machines.

• Furthermore, a honest verifier is expected to send only uniformly and
randomly chosen bits.
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Σ-Protocols. General Setting (2/2)

• Such protocol is denoted by (A, B).

• Then we say that (A, B) is a Σ-protocol for relation R.
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Σ-Protocols. Example

• Secret key is w, public key is v = gw

• Then R(v, w) = 1 iff v = gw

• We need a Σ-protocol for proving that A knows w, s.t. R(v, w) = 1,
or equivalently, such that gw = v
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Σ-Protocols. Inputs (1/2)

• Both principals know v (the public key of A)

• Only A knows w (the secret key /witness of A)

• RA [resp RB] is the random secret input of A [resp B].

? Recall that randomness was necessary
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Σ-Protocols. Inputs (2/2)

• The pair (v, w) ∈ R, where R ⊂ {0,1}∗×{0,1}∗ is a publicly known,
typically (but not necessary) efficiently verifiable relation. Let

RW (v) := {w : (v, w) ∈ R} and

RX := {v : RW (v) 6= ∅} .

• Intuitively: RW (v) is the set of secret keys corresponding to public key
v, and RX is the set of secret keys that have a corresponding public
key.

• Simplified presentation: all secret keys have a public key, i.e., RX is
the set of public keys. (For some well-known schemes like Guillou-
Quisquater, this is not the case!)
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Σ-Protocols. Description

a

z

c

A B

φ(v, a, c, z)
?
= accept

c← c(RB)

a← a(v, w, RA)

z ← z(v, w, RA, c)

a: initial message. tA = |a| is the authentication length — PPT algorithm
c: challenge, c← {0,1}tRB .
z: reply (may reuse a) — PPT algorithm.

Finally, B invokes a polynomial time computable predicate φ to check
whether the conversation (x, a, c, z) is accepting.
T-79.159 Cryptography and Data Security, 12.03.2003 Lecture 6: Authentication, Helger Lipmaa

24



Recall: Discrete Logarithm Problem, Syntax

• Let Gq be a group of prime order q. Let g ∈ Gq, g 6= 1. For each
h ∈ Gq there is a unique w ∈ Zq such that gw = h. w is called the
discrete logarithm of h wrt g.

• Let G be a family of groups of prime order such that the group oper-
ations can be performed efficiently, group elements can be efficiently
sampled with uniform distribution and group membership as well as
equality of group members can be efficiently tested.
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Recall: Discrete Logarithm Problem, Semantics

• Let Gen be a PPT generator algorithm that on input 1k outputs

? A description of a group Gq ∈ G (including the prime group order
q), and

? Two random elements g 6= 1, h from Gq (alternatively, Gen can
choose random elements g 6= 1, w ∈ Zq and then set h = gw).

Elements from Gq are represented with k bits.

• Gen is invulnerable if it is infeasible, given just a string v generated
according to Gen, to compute a witness w.
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Discrete Logarithm Problem, Example

• If Gq is a subgroup of order q in Z∗p, then the description of Gq consists
of two primes p and q. Usually, |p| > 600 and |q| > 160.

• Group family is the whole sequence Z∗p of groups, with Gq being a sub-
group of relevant size. The bitlength |q| of q is the security parameter
k

• Thus, “feasible” algorithms work in time that is polynomial in k

• An invulnerable generator outputs a generator g of large subgroup Gq

in some group Z∗p, s.t. |q| = k
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Schnorr Identification Scheme (1/2)

Let G be a family of groups. Let (Gq, g, w) ← Gen(1k) and let h := gw.
Let v = (Gq, g, h) be the common input, w is the private input to A. The
corresponding (unique) witness is w ∈ Zq such that gw = h. The relation
R consists of all such pairs. , R = (gw, w).
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Schnorr Identification Scheme (2/2)

Let G be a family of groups. Let (Gq, g, w) ← Gen(1k) and let h := gw.
Let v = (Gq, g, h) be the common input, w is the private input to A. The
corresponding (unique) witness is w ∈ Zq such that gw = h. The relation
R consists of all such pairs. , R = (gw, w).

A B

c c← {0,1}80

gz ?
= ahcz ← cw + r

r ← Zq; a := gr a

z

Check : gz = gcw+r = gr(gw)c = ahc.
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Schnorr: Efficiency (1/2)

• Schnorr scheme was originally designed for smartcard applications,
both communication and on-line computation are minimized.

• Instead of a, H(a) may be sent in the first step, where H is a hash
function with |H(a)| < |a|. Then, verification consists of checking
that H(gzh−c) = H(a). There is no known attack (but the brute
force) against the case when just t = 80 least significant bits were
transferred.
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Schnorr: Efficiency, (2/2)

• Communication complexity: ≈ t + t + 2t = 4t = 320 bits.

• On-line signature generation: one 2t × t bit multiplication (and one
t-bit addition). Random number generation and exponentiation can be
done off-line, during the processor’s idle time.

• If the scheme is used only for identification, where the prover has to
reply to the challenge in a few seconds, the security parameter t could
be lowered, say, to 48 bits.
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Security Properties: Special Soundness (1/2)

• Let v ∈ {0,1}∗ be a string. A pair of accepting conversations
(v, a, c, z) and (v, a, c′, z′) with c 6= c′ is called a collision.

? Collision occurs if the same person starts identification two times
with the same first message, is answered by a different second
message, and is still accepted

• Σ-protocol (A, B) for relation R has the collision-property iff the fol-
lowing holds:

? Given a collision for a public key v, there exists an efficient algo-
rithm that on input of a collision for v outputs a witness w such that
(v, w) ∈ R.
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Special Soundness (2/2)

• Σ-protocol (A, B) for R satisfies special soundness, iff it has the
collision-property. Thus, the collision-property implies special sound-
ness.

? NB! This only holds under own “simplifying” assumption

• Intuitively, special soundness guarantees that A does not have an in-
centive to start the same protocol twice with the same message. She
must really include some randomness.
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Another major concept: Zero-Knowledge (shortly)

• Suppose A and B engage in an execution of their protocol on common
input v.

• B wants to verify that A holds a witness w (a proof of a theorem, a
secret key, . . . ).

• Zero-knowledge means roughly that no matter how B behaves as a
verifier, he will not learn any information that it could not have com-
puted itself, even before the start of the protocol

• ZK is usually proven by simulating A. (More in a later lecture)
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Zero-Knowledge: Limitations

• ZK protocols require more than three moves unless the underlying lan-
guage is trivial (in BPP). Thus, in principle, none of the three-move
protocols handled here can be ZK. Four-move ZK protocols exist (Bel-
lare, Micali and Ostrovsky).

• The very efficient procedure for turning identification schemes into sig-
nature schemes, presented later, cannot be used if the identification
scheme is ZK (the simulation used for proving the ZKness can be used
to forge the signature). Thus, the BMO protocol cannot be used to con-
struct a signature scheme.
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Honest Verifier ZK (more in a later lecture)

(A, B) is honest verifier zero-knowledge if it is easy to “simulate” conver-
sations with an honest verifier. If, additionally, the simulator works by taking
any uniformly chosen challenge c as input and outputs an accepting con-
versation where c is the challenge (an accepting conversation (v, a, c, z)),
then (A, B) is said to be special honest verifier zero-knowledge.

HVZK protocols are useful, since the general ZK protocols are far less
efficient. Also, HVZK is sufficient in a wide range of applications. There
exist transformation methods for turning certain classes of HVZK protocols
into ZK ones.
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Witness Hiding

• Let (A, B) be a Σ-protocol for relation R with generator Gen.

• Let A be given an instance (v0, w0) ∈ R as generated by Gen(1k),
and let B∗ be an arbitrary PPT machine.

• The protocol (A, B∗) can be executed on common input v0 as many
times as B∗ desires. This means that A is given to B∗ as a black box.

• However, B∗ does not control the random tape of A (i.e., he cannot
rewind A).
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Witness Hiding, cnt

• Witness hiding captures the idea that no matter how maliciously the
enemy interrogates an honest prover, it gets at most a negligible ad-
vantage when trying to compute any w′0 in RW (v0), compared to the
situation before the start of the protocol.

• ZK guarantees that no information whatsoever is revealed in case of
any fixed common input v0

• Witness hiding only guarantees that no useful information is given
away in the average (otherwise Gen would not be invulnerable)
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Schnorr scheme: Security

Special Soundness . Given two accepting conversations (v, a, c, z) and
(v, a, c′, z′), with c 6= c′, w is computed as

w ←
z − z′

c− c′
=

(cw + r)− (c′w + r)

c− c′
=

(c− c′)w

c− c′
.

Thus, the Schnorr scheme satisfies special soundness.

Special HVZK. Select c, z ← Zq, compute a ← gz · h−c. Then (v, a, c, z)
is an accepting conversation with the correct distribution.

It was however not known if Schnorr’s scheme is WH. Very recently,
Schnorr’s scheme’s security against impersonation has been finally
proven.

M. Bellare and A. Palacio, “GQ and Schnorr Identification Schemes: Proofs
of Security against Impersonation under Active and Concurrent Attacks
Authors”, CRYPTO 2002 (august 2002)
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Okamoto-Schnorr Scheme

Let G be a family of groups. This time,

(Gq, g1, g2, w1, w2)← Gen(1k) ,

where both g1 and g2 are generators. Let

h := g
−w1
1 g

−w2
2 .

Let v = (Gq, g1, g2, h) be the common input, w = (w1, w2) is the private
input to A.
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Okamoto-Schnorr Scheme

A B
r1 ← Zq; r2 ← Zq

c c← {0,1}t

z1 ← cw1 + r1

a := gr1

1 gr2

2 a

z2 ← cw2 + r2

gz1

1 gz2

2 hc ?
= a

(z1, z2)

Check: gz1

1 gz2

2 hc = gcw1+r1

1 gcw2+r2

2 g−cw1

1 g−cw2

2 = gr1

1 gr2

2 = a.
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Okamoto-Schnorr Scheme: Security

Def (A, B) is secure if

1. (A, B) succeeds with overwhelming probability.

2. There is no coalition of A∗, B∗ with the property that, after a polyno-
mial number of executions of (A, B∗) and relaying a transcript of the
communication to A∗, it is possible to execute (A∗, B) with nonnegli-
gible probability of success.

Here, A∗ does not know the value w.

Theorem The Okamoto-Schnorr scheme is secure iff the DL is intractable.
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Conversion to Signature Scheme

Step I

Σ-protocols can be converted into signature schemes by using the next
general method:

a

z

c

A B

φ(v, a, c, z) accepts?

c← H(a)

a← a(v, w, RA)

z ← z(v, w, RA, c)

Here, H is a random oracle: a function with initially empty database (a, c),
such that H(a) returns c if (a, c) is in the database for some c. Otherwise
H generates uniformly a new c, adds (a, c) to the database and returns
newly generated c.
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Conversion to Signature Scheme

Step II

c is a random string that depends provably on the value a (exactly what
was needed from the c!). Additionally, A can compute c herself and thus,
interaction with B becomes unnecessary.

(a, z)

φ(v, a, H(a), z) accepts?

z ← z(v, w, RA, H(a))

a← a(v, w, RA)

A B

But: this cannot be used as an identification scheme (A may replay the
same a) neither can used for most of the Σ-protocols as a signature
scheme (e.g., in the case of Schnorr, a is a function of secret value r).
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Conversion to Signature Scheme

Step III

Idea: introduce a message m to be signed:

a← a(v, w, RA)

A B

(m, a, c, z)
z ← z(v, w, RA, c)

c← H(m, a)

φ(v, a, c, z) accepts?
c

?
= H(m, a)
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Schnorr Signature Scheme

Let G be a family of groups. Let

(Gq, w, h)← Gen(1k)

and let h := gw. Let v = (Gq, g, h) be the common input, w is the
private input to A. The corresponding (unique) witness is w ∈ Zq such that
gw = h. The relation R consists of all such pairs.

(m.a, c, z)

A B

z ← cw + r

c← H(m, a)

r ← Zq; a := gr

c
?
= H(m, a)

gz ?
= ahc

Check: gz = gcw+r = gr(gw)c = gwhc = ahc.
T-79.159 Cryptography and Data Security, 12.03.2003 Lecture 6: Authentication, Helger Lipmaa

46



SSS: Efficiency

• A has to perform on-line one H evaluation, one 160-bit multiplication
and one addition.

• Communication can be reduced: A sends (m, c, z) and B verifies that
s = H(m, gzh−c).
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Caveats

H can be chosen to be a standard hash function, but in such case the con-
version scheme looses provable security (cf the original paper of Schnorr).

For some concrete identification schemes, the conversion works if H is the
random oracle, but not for any instantiation of H by a real hash function.
(Goldwasser, Tauman, 2003)

If both identification scheme and signature are used in the same smartcard,
some care has to be taken. Namely, during the identification scheme B can
output as the challenge c = H(m, a) for m chosen by her. After receiving
z from A, B will own a legitimate signature (a, c, z) of m.

Solution (Schnorr scheme): A sends the 80 least significant bits of a during
the step 1. There is no known attack in this case.
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More Applications

Aside from identification and signing, Σ-protocols are also extensively
used in the following areas:

• Blind signature/digital cash protocols. For example, the Pointcheval-
Stern provably secure blind signatures are based on the Okamoto-
Schnorr identification scheme.

• Electronic voting. For example, the Cramer-Gennaro-Schoenmakers
secure and optimally efficient election scheme is based on the Schnorr
identification scheme.
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DSA: Digital Signature Algorithm (Standard)

• DSA — a variation of Schnorr’s scheme

• g — a generator of Gq, of order q; Gq is a subgroup of Z∗p

• Schnorr: Signature (c, z) = (H(m, gr mod q), H(m, gr

mod q)w + r), verify that c = H(m, gzh−c mod q)

• DSA: Define a ← (gr mod p) mod q, z = (H(m) + wa)r−1

mod q. Signature is (a, z)

• Verification: Accept if (gH(m)z−1
haz−1

mod p) mod q = a
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Deterministic Signature Algorithms (1/2)

• If a signature scheme is constructed from identification scheme, it must
have inherent randomness

• But there is no reason for a signature scheme to be randomized!

• Recent idea: using efficiently computable bilinear maps ê (Boneh,
Lynn, Shacham, 2001)

• Existence of such is known only in only a few cryptographically in-
teresting groups (supersingular elliptic curves, e.g. — Weil and Tate
pairings)
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Deterministic Signature Algorithms (2/2)

• Assume ê(ga, hb) = ê(g, h)ab for any g, h, a, b, and that it is hard to
find gab, given g, ga, gb (computational Diffie-Hellman assumption)

• For secret k. w, public k. v = gw and message m, the signature is mw

• Verification: Check that ê(g, mw) = ê(v, m).
Really, ê(g, mw) = ê(g, m)w = ê(gw, m)

• Benefit: signature is only one group element ≈ 80 bits. Signing (one
exponentiation) is fast

• Drawback: computing ê is ≈ 10x slower than computing the exponen-
tiation
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Other Signature Algorithms

• ECDSA: As DSA but works on elliptic curve groups

• RSA signature scheme: by itself insecure. Can be made secure by
using the PSS conversion scheme

• ESIGN, . . . — many other alternatives
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